2015-06-05 21:13:05 -07:00
|
|
|
import data.finset
|
|
|
|
open finset list
|
|
|
|
|
|
|
|
example (A : Type) (f : nat → nat → nat → nat) (a b : nat) : a = b → f a = f b :=
|
|
|
|
begin
|
|
|
|
intros,
|
|
|
|
congruence,
|
|
|
|
assumption
|
|
|
|
end
|
|
|
|
|
|
|
|
structure finite_set [class] {T : Type} (xs : set T) :=
|
|
|
|
(to_finset : finset T) (is_equiv : to_set to_finset = xs)
|
|
|
|
|
|
|
|
definition finset_set.is_subsingleton [instance] (T : Type) (xs : set T) : subsingleton (finite_set xs) :=
|
|
|
|
begin
|
|
|
|
constructor, intro a b,
|
|
|
|
induction a with f₁ h₁,
|
|
|
|
induction b with f₂ h₂,
|
|
|
|
subst xs,
|
|
|
|
let e := to_set.inj h₂,
|
|
|
|
subst e
|
|
|
|
end
|
|
|
|
|
|
|
|
open finite_set
|
|
|
|
|
|
|
|
definition card {T : Type} (xs : set T) [fxs : finite_set xs] :=
|
|
|
|
finset.card (to_finset xs)
|
|
|
|
|
|
|
|
example (A : Type) (s₁ s₂ : set A) [fxs₁ : finite_set s₁] [fxs₂ : finite_set s₂] : s₁ = s₂ → card s₁ = card s₂ :=
|
|
|
|
begin
|
|
|
|
intros,
|
|
|
|
congruence,
|
2015-10-16 12:32:44 -07:00
|
|
|
unfold set at *,
|
2015-06-05 21:13:05 -07:00
|
|
|
assumption
|
|
|
|
end
|
|
|
|
|
|
|
|
example {A : Type} (l₁ l₂ : list A) (h₁ : l₁ ≠ []) (h₂ : l₂ ≠ []) : l₁ = l₂ → last l₁ h₁ = last l₂ h₂ :=
|
|
|
|
begin
|
|
|
|
intros,
|
|
|
|
congruence,
|
|
|
|
assumption
|
|
|
|
end
|
|
|
|
|
|
|
|
example (A : Type) (last₁ last₂ : Π l : list A, l ≠ [] → A) (l₁ l₂ : list A) (h₁ : l₁ ≠ []) (h₂ : l₂ ≠ []) :
|
|
|
|
last₁ = last₂ → l₁ = l₂ → last₁ l₁ h₁ = last₂ l₂ h₂ :=
|
|
|
|
begin
|
|
|
|
intro e₁ e₂,
|
|
|
|
congruence,
|
|
|
|
repeat assumption
|
|
|
|
end
|