2015-09-12 17:17:13 -07:00
|
|
|
import data.finset data.finset.card data.finset.equiv
|
2015-12-05 23:52:16 -08:00
|
|
|
open nat decidable
|
2015-09-12 17:17:13 -07:00
|
|
|
|
|
|
|
namespace finset
|
|
|
|
variable {A : Type}
|
|
|
|
open finset (to_nat)
|
|
|
|
open finset (of_nat)
|
|
|
|
|
|
|
|
private lemma of_nat_eq_insert : ∀ {n s : nat}, n ∉ of_nat s → of_nat (2^n + s) = insert n (of_nat s)
|
|
|
|
| 0 s h := sorry
|
|
|
|
| (succ n) s h :=
|
|
|
|
have n ∉ of_nat s, from sorry,
|
|
|
|
assert of_nat s = insert n (of_nat s), from sorry,
|
|
|
|
finset.ext (λ x,
|
|
|
|
have gen : ∀ m, m ∈ of_nat (2^(succ n) + s) ↔ m ∈ insert (succ n) (of_nat s)
|
|
|
|
| zero :=
|
|
|
|
assert aux₁ : odd (2^(succ n) + s) ↔ odd s, from sorry,
|
|
|
|
calc
|
|
|
|
0 ∈ of_nat (2^(succ n) + s) ↔ odd (2^(succ n) + s) : sorry
|
|
|
|
... ↔ odd s : aux₁
|
|
|
|
... ↔ 0 ∈ insert (succ n) (of_nat s) : sorry
|
|
|
|
| (succ m) := sorry,
|
|
|
|
gen x)
|
|
|
|
|
|
|
|
end finset
|