54 lines
1.7 KiB
Text
54 lines
1.7 KiB
Text
|
/-
|
|||
|
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
|||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|||
|
Authors: Floris van Doorn
|
|||
|
|
|||
|
homotopy groups of a pointed space
|
|||
|
-/
|
|||
|
|
|||
|
import types.pointed .trunc_group
|
|||
|
|
|||
|
open nat eq pointed trunc is_trunc algebra
|
|||
|
|
|||
|
namespace eq
|
|||
|
|
|||
|
definition homotopy_group [reducible] (n : ℕ) (A : Pointed) : Type :=
|
|||
|
trunc 0 (Ω[n] A)
|
|||
|
|
|||
|
notation `π[`:95 n:0 `] `:0 A:95 := homotopy_group n A
|
|||
|
|
|||
|
definition pointed_homotopy_group [instance] [constructor] (n : ℕ) (A : Pointed)
|
|||
|
: pointed (π[n] A) :=
|
|||
|
pointed.mk (tr rfln)
|
|||
|
|
|||
|
definition group_homotopy_group [instance] [constructor] (n : ℕ) (A : Pointed)
|
|||
|
: group (π[succ n] A) :=
|
|||
|
trunc_group concat inverse idp con.assoc idp_con con_idp con.left_inv
|
|||
|
|
|||
|
definition comm_group_homotopy_group [constructor] (n : ℕ) (A : Pointed)
|
|||
|
: comm_group (π[succ (succ n)] A) :=
|
|||
|
trunc_comm_group concat inverse idp con.assoc idp_con con_idp con.left_inv eckmann_hilton
|
|||
|
|
|||
|
local attribute comm_group_homotopy_group [instance]
|
|||
|
|
|||
|
definition Pointed_homotopy_group [constructor] (n : ℕ) (A : Pointed) : Pointed :=
|
|||
|
Pointed.mk (π[n] A)
|
|||
|
|
|||
|
definition Group_homotopy_group [constructor] (n : ℕ) (A : Pointed) : Group :=
|
|||
|
Group.mk (π[succ n] A) _
|
|||
|
|
|||
|
definition CommGroup_homotopy_group [constructor] (n : ℕ) (A : Pointed) : CommGroup :=
|
|||
|
CommGroup.mk (π[succ (succ n)] A) _
|
|||
|
|
|||
|
definition fundamental_group [constructor] (A : Pointed) : Group :=
|
|||
|
Group_homotopy_group zero A
|
|||
|
|
|||
|
notation `πP[`:95 n:0 `] `:0 A:95 := Pointed_homotopy_group n A
|
|||
|
notation `πG[`:95 n:0 ` +1] `:0 A:95 := Group_homotopy_group n A
|
|||
|
notation `πaG[`:95 n:0 ` +2] `:0 A:95 := CommGroup_homotopy_group n A
|
|||
|
|
|||
|
prefix `π₁`:95 := fundamental_group
|
|||
|
|
|||
|
|
|||
|
end eq
|