lean2/hott/algebra/homotopy_group.hlean

54 lines
1.7 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
homotopy groups of a pointed space
-/
import types.pointed .trunc_group
open nat eq pointed trunc is_trunc algebra
namespace eq
definition homotopy_group [reducible] (n : ) (A : Pointed) : Type :=
trunc 0 (Ω[n] A)
notation `π[`:95 n:0 `] `:0 A:95 := homotopy_group n A
definition pointed_homotopy_group [instance] [constructor] (n : ) (A : Pointed)
: pointed (π[n] A) :=
pointed.mk (tr rfln)
definition group_homotopy_group [instance] [constructor] (n : ) (A : Pointed)
: group (π[succ n] A) :=
trunc_group concat inverse idp con.assoc idp_con con_idp con.left_inv
definition comm_group_homotopy_group [constructor] (n : ) (A : Pointed)
: comm_group (π[succ (succ n)] A) :=
trunc_comm_group concat inverse idp con.assoc idp_con con_idp con.left_inv eckmann_hilton
local attribute comm_group_homotopy_group [instance]
definition Pointed_homotopy_group [constructor] (n : ) (A : Pointed) : Pointed :=
Pointed.mk (π[n] A)
definition Group_homotopy_group [constructor] (n : ) (A : Pointed) : Group :=
Group.mk (π[succ n] A) _
definition CommGroup_homotopy_group [constructor] (n : ) (A : Pointed) : CommGroup :=
CommGroup.mk (π[succ (succ n)] A) _
definition fundamental_group [constructor] (A : Pointed) : Group :=
Group_homotopy_group zero A
notation `πP[`:95 n:0 `] `:0 A:95 := Pointed_homotopy_group n A
notation `πG[`:95 n:0 ` +1] `:0 A:95 := Group_homotopy_group n A
notation `πaG[`:95 n:0 ` +2] `:0 A:95 := CommGroup_homotopy_group n A
prefix `π₁`:95 := fundamental_group
end eq