lean2/tests/lean/elab1.lean.expected.out

181 lines
6.8 KiB
Text
Raw Normal View History

Set: pp::colors
Set: pp::unicode
Assumed: f
Failed to solve
⊢ (?M3::1 ≈ λ x : , x) ⊕ (?M3::1 ≈ nat_to_int) ⊕ (?M3::1 ≈ nat_to_real)
(line: 4: pos: 8) Coercion for
10
Failed to solve
⊢ Bool ≺
Substitution
⊢ Bool ≺ ?M3::0
(line: 4: pos: 6) Type of argument 3 must be convertible to the expected type in the application of
f::explicit
with arguments:
?M3::0
?M3::1 10
Assignment
≺ ?M3::0
Substitution
⊢ (?M3::5[inst:0 (10)]) 10 ≺ ?M3::0
(line: 4: pos: 6) Type of argument 2 must be convertible to the expected type in the application of
f::explicit
with arguments:
?M3::0
?M3::1 10
Assignment
x : ⊢ λ x : , ≈ ?M3::5
Destruct/Decompose
x : ≈ ?M3::5 x
Destruct/Decompose
≈ Π x : ?M3::4, ?M3::5 x
Substitution
⊢ ?M3::3 ≈ Π x : ?M3::4, ?M3::5 x
Function expected at
?M3::1 10
Assignment
≺ ?M3::3
Propagate type, ?M3::1 : ?M3::3
Assignment
⊢ ?M3::1 ≈ λ x : , x
assumption 0
Failed to solve
⊢ Bool ≺
Substitution
⊢ Bool ≺ ?M3::0
(line: 4: pos: 6) Type of argument 3 must be convertible to the expected type in the application of
f::explicit
with arguments:
?M3::0
?M3::1 10
Assignment
≺ ?M3::0
Substitution
⊢ (?M3::5[inst:0 (10)]) 10 ≺ ?M3::0
(line: 4: pos: 6) Type of argument 2 must be convertible to the expected type in the application of
f::explicit
with arguments:
?M3::0
?M3::1 10
Assignment
_ : ⊢ λ x : , ≈ ?M3::5
Destruct/Decompose
_ : ≈ ?M3::5 _
Destruct/Decompose
≈ Π x : ?M3::4, ?M3::5 x
Substitution
⊢ ?M3::3 ≈ Π x : ?M3::4, ?M3::5 x
Function expected at
?M3::1 10
Assignment
≺ ?M3::3
Propagate type, ?M3::1 : ?M3::3
Assignment
⊢ ?M3::1 ≈ nat_to_int
assumption 1
Failed to solve
⊢ Bool ≺
Substitution
⊢ Bool ≺ ?M3::0
(line: 4: pos: 6) Type of argument 3 must be convertible to the expected type in the application of
f::explicit
with arguments:
?M3::0
?M3::1 10
Assignment
≺ ?M3::0
Substitution
⊢ (?M3::5[inst:0 (10)]) 10 ≺ ?M3::0
(line: 4: pos: 6) Type of argument 2 must be convertible to the expected type in the application of
f::explicit
with arguments:
?M3::0
?M3::1 10
Assignment
_ : ⊢ λ x : , ≈ ?M3::5
Destruct/Decompose
_ : ≈ ?M3::5 _
Destruct/Decompose
≈ Π x : ?M3::4, ?M3::5 x
Substitution
⊢ ?M3::3 ≈ Π x : ?M3::4, ?M3::5 x
Function expected at
?M3::1 10
Assignment
≺ ?M3::3
Propagate type, ?M3::1 : ?M3::3
Assignment
⊢ ?M3::1 ≈ nat_to_real
assumption 2
Assumed: g
Error (line: 7, pos: 6) unsolved placeholder at term
g 10
Assumed: h
Failed to solve
x : ?M3::0, A : Type ⊢ ?M3::0[lift:0:2] ≺ A
(line: 11: pos: 27) Type of argument 2 must be convertible to the expected type in the application of
h
with arguments:
A
x
Assumed: eq
Failed to solve
A : Type, B : Type, a : ?M3::0, b : ?M3::1, C : Type ⊢ ?M3::0[lift:0:3] ≺ C
(line: 15: pos: 51) Type of argument 2 must be convertible to the expected type in the application of
eq
with arguments:
C
a
b
Assumed: a
Assumed: b
Assumed: H
Error (line: 20, pos: 18) type mismatch during term elaboration
Discharge (λ H1 : _, Conj H1 (Conjunct1 H))
Term after elaboration:
Discharge (λ H1 : ?M4, Conj H1 (Conjunct1 H))
Expected type:
b
Got:
?M4 ⇒ ?M2
Elaborator state
?M2[lift:0:1] ≈ (?M4[lift:0:1]) ∧ a
b ≈ if Bool ?M4 ?M2
b ≈ if Bool ?M4 ?M2
Error (line: 22, pos: 22) type mismatch at application
Trans (Refl a) (Refl b)
Function type:
Π (A : Type U) (a b c : A), (a = b) → (b = c) → (a = c)
Arguments types:
Bool : Type
a : Bool
a : Bool
b : Bool
Refl a : a = a
Refl b : b = b
Error (line: 24, pos: 6) type mismatch at application
f Bool Bool
Function type:
Π (A : Type), A → A → A
Arguments types:
Type : Type 1
Bool : Type
Bool : Type
Error (line: 27, pos: 21) type mismatch at application
DisjCases (EM a) (λ H_a : a, H) (λ H_na : ¬ a, NotImp1 (MT H H_na))
Function type:
Π (a b c : Bool), (a b) → (a → c) → (b → c) → c
Arguments types:
a : Bool
¬ a : Bool
a : Bool
EM a : a ¬ a
(λ H_a : a, H) : a → ((a ⇒ b) ⇒ a)
(λ H_na : ¬ a, NotImp1 (MT H H_na)) : (¬ a) → a