32 lines
982 B
Text
32 lines
982 B
Text
|
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||
|
-- Released under Apache 2.0 license as described in the file LICENSE.
|
||
|
-- Author: Leonardo de Moura
|
||
|
import logic
|
||
|
|
||
|
inductive pair (A : Type) (B : Type) : Type :=
|
||
|
| mk_pair : A → B → pair A B
|
||
|
|
||
|
section
|
||
|
parameter {A : Type}
|
||
|
parameter {B : Type}
|
||
|
|
||
|
definition fst [inline] (p : pair A B) := pair_rec (λ x y, x) p
|
||
|
definition snd [inline] (p : pair A B) := pair_rec (λ x y, y) p
|
||
|
|
||
|
theorem pair_inhabited (H1 : inhabited A) (H2 : inhabited B) : inhabited (pair A B)
|
||
|
:= inhabited_elim H1 (λ a, inhabited_elim H2 (λ b, inhabited_intro (mk_pair a b)))
|
||
|
|
||
|
theorem fst_mk_pair (a : A) (b : B) : fst (mk_pair a b) = a
|
||
|
:= refl a
|
||
|
|
||
|
theorem snd_mk_pair (a : A) (b : B) : snd (mk_pair a b) = b
|
||
|
:= refl b
|
||
|
|
||
|
theorem pair_ext (p : pair A B) : mk_pair (fst p) (snd p) = p
|
||
|
:= pair_rec (λ x y, refl (mk_pair x y)) p
|
||
|
end
|
||
|
|
||
|
-- notation for n-ary tuples
|
||
|
notation `(` h `,` t:(foldl `,` (e r, mk_pair r e) h) `)` := t
|
||
|
|