242 lines
9.4 KiB
Text
242 lines
9.4 KiB
Text
|
/-
|
|||
|
Copyright (c) 2016 Floris van Doorn. All rights reserved.
|
|||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|||
|
Authors: Floris van Doorn
|
|||
|
|
|||
|
The Freudenthal Suspension Theorem
|
|||
|
-/
|
|||
|
|
|||
|
import homotopy.wedge homotopy.circle
|
|||
|
|
|||
|
open eq is_conn is_trunc pointed susp nat pi equiv is_equiv trunc fiber trunc_index
|
|||
|
|
|||
|
namespace freudenthal section
|
|||
|
|
|||
|
parameters {A : Type*} {n : ℕ} [is_conn n A]
|
|||
|
|
|||
|
/-
|
|||
|
This proof is ported from Agda
|
|||
|
This is the 95% version of the Freudenthal Suspension Theorem, which means that we don't
|
|||
|
prove that loop_susp_unit : A →* Ω(psusp A) is 2n-connected (if A is n-connected),
|
|||
|
but instead we only prove that it induces an equivalence on the first 2n homotopy groups.
|
|||
|
-/
|
|||
|
|
|||
|
private definition up (a : A) : north = north :> susp A :=
|
|||
|
loop_susp_unit A a
|
|||
|
|
|||
|
definition code_merid : A → ptrunc (n + n) A → ptrunc (n + n) A :=
|
|||
|
begin
|
|||
|
have is_conn n (ptrunc (n + n) A), from !is_conn_trunc,
|
|||
|
refine wedge_extension.ext n n (λ x y, ttrunc (n + n) A) _ _ _,
|
|||
|
{ exact tr},
|
|||
|
{ exact id},
|
|||
|
{ reflexivity}
|
|||
|
end
|
|||
|
|
|||
|
definition code_merid_β_left (a : A) : code_merid a pt = tr a :=
|
|||
|
by apply wedge_extension.β_left
|
|||
|
|
|||
|
definition code_merid_β_right (b : ptrunc (n + n) A) : code_merid pt b = b :=
|
|||
|
by apply wedge_extension.β_right
|
|||
|
|
|||
|
definition code_merid_coh : code_merid_β_left pt = code_merid_β_right pt :=
|
|||
|
begin
|
|||
|
symmetry, apply eq_of_inv_con_eq_idp, apply wedge_extension.coh
|
|||
|
end
|
|||
|
|
|||
|
definition is_equiv_code_merid (a : A) : is_equiv (code_merid a) :=
|
|||
|
begin
|
|||
|
have Πa, is_trunc n.-2.+1 (is_equiv (code_merid a)),
|
|||
|
from λa, is_trunc_of_le _ !minus_one_le_succ,
|
|||
|
refine is_conn.elim (n.-1) _ _ a,
|
|||
|
{ esimp, exact homotopy_closed id (homotopy.symm (code_merid_β_right))}
|
|||
|
end
|
|||
|
|
|||
|
definition code_merid_equiv [constructor] (a : A) : trunc (n + n) A ≃ trunc (n + n) A :=
|
|||
|
equiv.mk _ (is_equiv_code_merid a)
|
|||
|
|
|||
|
definition code_merid_inv_pt (x : trunc (n + n) A) : (code_merid_equiv pt)⁻¹ x = x :=
|
|||
|
begin
|
|||
|
refine ap010 @(is_equiv.inv _) _ x ⬝ _,
|
|||
|
{ exact homotopy_closed id (homotopy.symm code_merid_β_right)},
|
|||
|
{ apply is_conn.elim_β},
|
|||
|
{ reflexivity}
|
|||
|
end
|
|||
|
|
|||
|
definition code [unfold 4] : susp A → Type :=
|
|||
|
susp.elim_type (trunc (n + n) A) (trunc (n + n) A) code_merid_equiv
|
|||
|
|
|||
|
definition is_trunc_code (x : susp A) : is_trunc (n + n) (code x) :=
|
|||
|
begin
|
|||
|
induction x with a: esimp,
|
|||
|
{ exact _},
|
|||
|
{ exact _},
|
|||
|
{ apply is_prop.elimo}
|
|||
|
end
|
|||
|
local attribute is_trunc_code [instance]
|
|||
|
|
|||
|
definition decode_north [unfold 4] : code north → trunc (n + n) (north = north :> susp A) :=
|
|||
|
trunc_functor (n + n) up
|
|||
|
|
|||
|
definition decode_north_pt : decode_north (tr pt) = tr idp :=
|
|||
|
ap tr !con.right_inv
|
|||
|
|
|||
|
definition decode_south [unfold 4] : code south → trunc (n + n) (north = south :> susp A) :=
|
|||
|
trunc_functor (n + n) merid
|
|||
|
|
|||
|
definition encode' {x : susp A} (p : north = x) : code x :=
|
|||
|
transport code p (tr pt)
|
|||
|
|
|||
|
definition encode [unfold 5] {x : susp A} (p : trunc (n + n) (north = x)) : code x :=
|
|||
|
begin
|
|||
|
induction p with p,
|
|||
|
exact transport code p (tr pt)
|
|||
|
end
|
|||
|
|
|||
|
theorem encode_decode_north (c : code north) : encode (decode_north c) = c :=
|
|||
|
begin
|
|||
|
have H : Πc, is_trunc (n + n) (encode (decode_north c) = c), from _,
|
|||
|
esimp at *,
|
|||
|
induction c with a,
|
|||
|
rewrite [↑[encode, decode_north, up, code], con_tr, elim_type_merid, ▸*,
|
|||
|
code_merid_β_left, elim_type_merid_inv, ▸*, code_merid_inv_pt]
|
|||
|
end
|
|||
|
|
|||
|
definition decode_coh_f (a : A) : tr (up pt) =[merid a] decode_south (code_merid a (tr pt)) :=
|
|||
|
begin
|
|||
|
refine _ ⬝op ap decode_south (code_merid_β_left a)⁻¹,
|
|||
|
apply trunc_pathover,
|
|||
|
apply eq_pathover_constant_left_id_right,
|
|||
|
apply square_of_eq,
|
|||
|
exact whisker_right !con.right_inv (merid a)
|
|||
|
end
|
|||
|
|
|||
|
definition decode_coh_g (a' : A) : tr (up a') =[merid pt] decode_south (code_merid pt (tr a')) :=
|
|||
|
begin
|
|||
|
refine _ ⬝op ap decode_south (code_merid_β_right (tr a'))⁻¹,
|
|||
|
apply trunc_pathover,
|
|||
|
apply eq_pathover_constant_left_id_right,
|
|||
|
apply square_of_eq, refine !inv_con_cancel_right ⬝ !idp_con⁻¹
|
|||
|
end
|
|||
|
|
|||
|
definition decode_coh_lem {A : Type} {a a' : A} (p : a = a')
|
|||
|
: whisker_right (con.right_inv p) p = inv_con_cancel_right p p ⬝ (idp_con p)⁻¹ :=
|
|||
|
by induction p; reflexivity
|
|||
|
|
|||
|
theorem decode_coh (a : A) : decode_north =[merid a] decode_south :=
|
|||
|
begin
|
|||
|
apply arrow_pathover_left, intro c, esimp at *,
|
|||
|
induction c with a',
|
|||
|
rewrite [↑code, elim_type_merid, ▸*],
|
|||
|
refine wedge_extension.ext n n _ _ _ _ a a',
|
|||
|
{ exact decode_coh_f},
|
|||
|
{ exact decode_coh_g},
|
|||
|
{ clear a a', unfold [decode_coh_f, decode_coh_g], refine ap011 concato_eq _ _,
|
|||
|
{ refine ap (λp, trunc_pathover (eq_pathover_constant_left_id_right (square_of_eq p))) _,
|
|||
|
apply decode_coh_lem},
|
|||
|
{ apply ap (λp, ap decode_south p⁻¹), apply code_merid_coh}}
|
|||
|
end
|
|||
|
|
|||
|
definition decode [unfold 4] {x : susp A} (c : code x) : trunc (n + n) (north = x) :=
|
|||
|
begin
|
|||
|
induction x with a,
|
|||
|
{ exact decode_north c},
|
|||
|
{ exact decode_south c},
|
|||
|
{ exact decode_coh a}
|
|||
|
end
|
|||
|
|
|||
|
theorem decode_encode {x : susp A} (p : trunc (n + n) (north = x)) : decode (encode p) = p :=
|
|||
|
begin
|
|||
|
induction p with p, induction p, esimp, apply decode_north_pt
|
|||
|
end
|
|||
|
|
|||
|
parameters (A n)
|
|||
|
definition equiv' : trunc (n + n) A ≃ trunc (n + n) (Ω (psusp A)) :=
|
|||
|
equiv.MK decode_north encode decode_encode encode_decode_north
|
|||
|
|
|||
|
definition pequiv' : ptrunc (n + n) A ≃* ptrunc (n + n) (Ω (psusp A)) :=
|
|||
|
pequiv_of_equiv equiv' decode_north_pt
|
|||
|
|
|||
|
-- We don't prove this:
|
|||
|
-- theorem freudenthal_suspension : is_conn_fun (n+n) (loop_susp_unit A) := sorry
|
|||
|
|
|||
|
end end freudenthal
|
|||
|
|
|||
|
open algebra group
|
|||
|
definition freudenthal_pequiv (A : Type*) {n k : ℕ} [is_conn n A] (H : k ≤ 2 * n)
|
|||
|
: ptrunc k A ≃* ptrunc k (Ω (psusp A)) :=
|
|||
|
have H' : k ≤[ℕ₋₂] n + n,
|
|||
|
by rewrite [mul.comm at H, -algebra.zero_add n at {1}]; exact of_nat_le_of_nat H,
|
|||
|
ptrunc_pequiv_ptrunc_of_le H' (freudenthal.pequiv' A n)
|
|||
|
|
|||
|
definition freudenthal_equiv {A : Type*} {n k : ℕ} [is_conn n A] (H : k ≤ 2 * n)
|
|||
|
: trunc k A ≃ trunc k (Ω (psusp A)) :=
|
|||
|
freudenthal_pequiv A H
|
|||
|
|
|||
|
definition freudenthal_homotopy_group_pequiv (A : Type*) {n k : ℕ} [is_conn n A] (H : k ≤ 2 * n)
|
|||
|
: π*[k + 1] (psusp A) ≃* π*[k] A :=
|
|||
|
calc
|
|||
|
π*[k + 1] (psusp A) ≃* π*[k] (Ω (psusp A)) : pequiv_of_eq (phomotopy_group_succ_in (psusp A) k)
|
|||
|
... ≃* Ω[k] (ptrunc k (Ω (psusp A))) : phomotopy_group_pequiv_loop_ptrunc k (Ω (psusp A))
|
|||
|
... ≃* Ω[k] (ptrunc k A) : loopn_pequiv_loopn k (freudenthal_pequiv A H)
|
|||
|
... ≃* π*[k] A : (phomotopy_group_pequiv_loop_ptrunc k A)⁻¹ᵉ*
|
|||
|
|
|||
|
definition freudenthal_homotopy_group_isomorphism (A : Type*) {n k : ℕ} [is_conn n A]
|
|||
|
(H : k + 1 ≤ 2 * n) : πg[k+1 +1] (psusp A) ≃g πg[k+1] A :=
|
|||
|
begin
|
|||
|
fapply isomorphism_of_equiv,
|
|||
|
{ exact equiv_of_pequiv (freudenthal_homotopy_group_pequiv A H)},
|
|||
|
{ intro g h,
|
|||
|
refine _ ⬝ !phomotopy_group_pequiv_loop_ptrunc_inv_con,
|
|||
|
apply ap !phomotopy_group_pequiv_loop_ptrunc⁻¹ᵉ*,
|
|||
|
refine ap (loopn_pequiv_loopn _ _) _ ⬝ !loopn_pequiv_loopn_con,
|
|||
|
refine ap !phomotopy_group_pequiv_loop_ptrunc _ ⬝ !phomotopy_group_pequiv_loop_ptrunc_con,
|
|||
|
apply phomotopy_group_succ_in_con}
|
|||
|
end
|
|||
|
|
|||
|
namespace susp
|
|||
|
|
|||
|
definition iterate_psusp_stability_pequiv (A : Type*) {k n : ℕ} [is_conn 0 A]
|
|||
|
(H : k ≤ 2 * n) : π*[k + 1] (iterate_psusp (n + 1) A) ≃* π*[k] (iterate_psusp n A) :=
|
|||
|
have is_conn n (iterate_psusp n A), by rewrite [-zero_add n]; exact _,
|
|||
|
freudenthal_homotopy_group_pequiv (iterate_psusp n A) H
|
|||
|
|
|||
|
definition iterate_psusp_stability_isomorphism (A : Type*) {k n : ℕ} [is_conn 0 A]
|
|||
|
(H : k + 1 ≤ 2 * n) : πg[k+1 +1] (iterate_psusp (n + 1) A) ≃g πg[k+1] (iterate_psusp n A) :=
|
|||
|
have is_conn n (iterate_psusp n A), by rewrite [-zero_add n]; exact _,
|
|||
|
freudenthal_homotopy_group_isomorphism (iterate_psusp n A) H
|
|||
|
|
|||
|
definition stability_helper1 {k n : ℕ} (H : k + 2 ≤ 2 * n) : k ≤ 2 * pred n :=
|
|||
|
begin
|
|||
|
rewrite [mul_pred_right], change pred (pred (k + 2)) ≤ pred (pred (2 * n)),
|
|||
|
apply pred_le_pred, apply pred_le_pred, exact H
|
|||
|
end
|
|||
|
|
|||
|
definition stability_helper2 (A : Type) {k n : ℕ} (H : k + 2 ≤ 2 * n) :
|
|||
|
is_conn (pred n) (iterate_susp (n + 1) A) :=
|
|||
|
have Π(n : ℕ), n = -2 + (succ n + 1),
|
|||
|
begin intro n, induction n with n IH, reflexivity, exact ap succ IH end,
|
|||
|
begin
|
|||
|
cases n with n,
|
|||
|
{ exfalso, exact not_succ_le_zero _ H},
|
|||
|
{ esimp, rewrite [this n], apply is_conn_iterate_susp}
|
|||
|
end
|
|||
|
|
|||
|
definition iterate_susp_stability_pequiv (A : Type) {k n : ℕ}
|
|||
|
(H : k + 2 ≤ 2 * n) : π*[k + 1] (pointed.MK (iterate_susp (n + 2) A) !north) ≃*
|
|||
|
π*[k ] (pointed.MK (iterate_susp (n + 1) A) !north) :=
|
|||
|
have is_conn (pred n) (carrier (pointed.MK (iterate_susp (n + 1) A) !north)), from
|
|||
|
stability_helper2 A H,
|
|||
|
freudenthal_homotopy_group_pequiv (pointed.MK (iterate_susp (n + 1) A) !north)
|
|||
|
(stability_helper1 H)
|
|||
|
|
|||
|
definition iterate_susp_stability_isomorphism (A : Type) {k n : ℕ}
|
|||
|
(H : k + 3 ≤ 2 * n) : πg[k+1 +1] (pointed.MK (iterate_susp (n + 2) A) !north) ≃g
|
|||
|
πg[k+1] (pointed.MK (iterate_susp (n + 1) A) !north) :=
|
|||
|
have is_conn (pred n) (carrier (pointed.MK (iterate_susp (n + 1) A) !north)), from
|
|||
|
@stability_helper2 A (k+1) n H,
|
|||
|
freudenthal_homotopy_group_isomorphism (pointed.MK (iterate_susp (n + 1) A) !north)
|
|||
|
(stability_helper1 H)
|
|||
|
|
|||
|
end susp
|