lean2/library/theories/analysis/bounded_linear_operator.lean

413 lines
15 KiB
Text
Raw Normal View History

/-
Copyright (c) 2016 Robert Y. Lewis. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Robert Y. Lewis
Bounded linear operators
-/
import .normed_space .real_limit algebra.module
open real nat classical
noncomputable theory
namespace analysis
-- define bounded linear operators and basic instances
section bdd_lin_op
set_option pp.universes true
structure is_bdd_linear_map [class] {V W : Type} [normed_vector_space V] [normed_vector_space W] (f : V → W)
extends is_linear_map f :=
(op_norm : ) (op_norm_pos : op_norm > 0) (op_norm_bound : ∀ v : V, ∥f v∥ ≤ op_norm * ∥v∥)
theorem is_bdd_linear_map_id (V : Type) [normed_vector_space V] : is_bdd_linear_map (λ x : V, x) :=
begin
fapply is_bdd_linear_map.mk,
repeat (intros; reflexivity),
exact 1,
exact zero_lt_one,
intro, rewrite one_mul, apply le.refl
end
theorem is_bdd_linear_map_zero [instance] (V W : Type) [normed_vector_space V] [normed_vector_space W] :
is_bdd_linear_map (λ x : V, (0 : W)) :=
begin
fapply is_bdd_linear_map.mk,
intros,
rewrite zero_add,
intros,
rewrite smul_zero,
exact 1,
exact zero_lt_one,
intros,
rewrite [norm_zero, one_mul],
apply norm_nonneg
end
theorem is_bdd_linear_map_add [instance] {V W : Type} [normed_vector_space V] [normed_vector_space W]
(f g : V → W) [Hbf : is_bdd_linear_map f] [Hbg : is_bdd_linear_map g] :
is_bdd_linear_map (λ x, f x + g x) :=
begin
fapply is_bdd_linear_map.mk,
{intros,
rewrite [linear_map_additive f, linear_map_additive g],
simp},
{intros,
rewrite [linear_map_homogeneous f, linear_map_homogeneous g, smul_left_distrib]},
{exact is_bdd_linear_map.op_norm _ _ f + is_bdd_linear_map.op_norm _ _ g},
{apply add_pos,
repeat apply is_bdd_linear_map.op_norm_pos},
{intro,
apply le.trans,
apply norm_triangle,
rewrite right_distrib,
apply add_le_add,
repeat apply is_bdd_linear_map.op_norm_bound}
end
theorem is_bdd_linear_map_smul [instance] {V W : Type} [normed_vector_space V] [normed_vector_space W]
(f : V → W) (c : ) [Hbf : is_bdd_linear_map f] : is_bdd_linear_map (λ x, c • f x) :=
begin
apply @decidable.cases_on (c = 0),
exact _,
{intro Hcz,
rewrite Hcz,
have Hfe : (λ x : V, (0 : ) • f x) = (λ x : V, 0), from funext (λ x, !zero_smul),
rewrite Hfe,
apply is_bdd_linear_map_zero},
intro Hcnz,
fapply is_bdd_linear_map.mk,
{intros,
rewrite [linear_map_additive f, smul_left_distrib]},
{intros,
rewrite [linear_map_homogeneous f, -*mul_smul, {c * a}mul.comm]},
{exact (abs c) * is_bdd_linear_map.op_norm _ _ f},
{have Hpos : abs c > 0, from abs_pos_of_ne_zero Hcnz,
apply mul_pos,
assumption,
apply is_bdd_linear_map.op_norm_pos},
{intro,
rewrite [norm_smul, mul.assoc],
apply mul_le_mul_of_nonneg_left,
apply is_bdd_linear_map.op_norm_bound,
apply abs_nonneg}
end
theorem is_bdd_linear_map_neg [instance] {V W : Type} [normed_vector_space V] [normed_vector_space W]
(f : V → W) [Hbf : is_bdd_linear_map f] : is_bdd_linear_map (λ x, -f x) :=
begin
have H : (λ x : V, -f x) = (λ x : V, (-1 : ) • f x), from funext (λ x, eq.symm !neg_one_smul),
rewrite H,
apply is_bdd_linear_map_smul
end
-- this can't be an instance because things loop
theorem is_bdd_linear_map_comp {U V W : Type} [normed_vector_space U] [normed_vector_space V]
[normed_vector_space W] (f : V → W) (g : U → V) [is_bdd_linear_map f] [is_bdd_linear_map g] :
is_bdd_linear_map (λ u, f (g u)) :=
begin
fapply is_bdd_linear_map.mk,
{intros,
rewrite [linear_map_additive g, linear_map_additive f]},
{intros,
rewrite [linear_map_homogeneous g, linear_map_homogeneous f]},
{exact is_bdd_linear_map.op_norm _ _ f * is_bdd_linear_map.op_norm _ _ g},
{apply mul_pos, repeat apply is_bdd_linear_map.op_norm_pos},
{intros,
apply le.trans,
apply is_bdd_linear_map.op_norm_bound _ _ f,
apply le.trans,
apply mul_le_mul_of_nonneg_left,
apply is_bdd_linear_map.op_norm_bound _ _ g,
apply le_of_lt !is_bdd_linear_map.op_norm_pos,
rewrite *mul.assoc,
apply le.refl}
end
variables {V W : Type}
variables [HV : normed_vector_space V] [HW : normed_vector_space W]
include HV HW
variable f : V → W
variable [Hf : is_bdd_linear_map f]
include Hf
definition op_norm := is_bdd_linear_map.op_norm _ _ f
theorem op_norm_pos : op_norm f > 0 := is_bdd_linear_map.op_norm_pos _ _ f
theorem op_norm_bound (v : V) : ∥f v∥ ≤ (op_norm f) * ∥v∥ := is_bdd_linear_map.op_norm_bound _ _ f v
theorem bounded_linear_operator_continuous : continuous f :=
begin
intro x,
apply normed_vector_space.continuous_at_intro,
intro ε Hε,
existsi ε / (op_norm f),
split,
apply div_pos_of_pos_of_pos Hε !op_norm_pos,
intro x' Hx',
rewrite [-linear_map_sub f],
apply lt_of_le_of_lt,
apply op_norm_bound f,
rewrite [-@mul_div_cancel' _ _ ε (op_norm f) (ne_of_gt !op_norm_pos)],
apply mul_lt_mul_of_pos_left,
exact Hx',
apply op_norm_pos
end
end bdd_lin_op
-- define Frechet derivative and basic properties
section frechet_deriv
variables {V W : Type}
variables [HV : normed_vector_space V] [HW : normed_vector_space W]
include HV HW
definition is_frechet_deriv_at (f A : V → W) [is_bdd_linear_map A] (x : V) :=
(λ h : V, ∥f (x + h) - f x - A h ∥ / ∥ h ∥) ⟶ 0 at 0
theorem is_frechet_deriv_at_intro {f A : V → W} [is_bdd_linear_map A] {x : V}
(H : ∀ ⦃ε : ℝ⦄, ε > 0 →
(∃ δ : , δ > 0 ∧ ∀ ⦃x' : V⦄, x' ≠ 0 ∧ ∥x'∥ < δ → ∥f (x + x') - f x - A x'∥ / ∥x'∥ < ε)) :
is_frechet_deriv_at f A x :=
begin
intros ε Hε,
cases H Hε with δ Hδ,
cases Hδ with Hδ Hδ',
existsi δ,
split,
assumption,
intros x' Hx',
cases Hx' with Hx'1 Hx'2,
show abs (∥f (x + x') - f x - A x'∥ / ∥x'∥ - 0) < ε, begin
have H : ∥f (x + x') - f x - A x'∥ / ∥x'∥ ≥ 0,
from div_nonneg_of_nonneg_of_nonneg !norm_nonneg !norm_nonneg,
rewrite [sub_zero, abs_of_nonneg H],
apply Hδ',
split,
assumption,
rewrite [-sub_zero x'],
apply Hx'2
end
end
theorem is_frechet_deriv_at_elim {f A : V → W} [is_bdd_linear_map A] {x : V} (H : is_frechet_deriv_at f A x) :
∀ ⦃ε : ℝ⦄, ε > 0 →
(∃ δ : , δ > 0 ∧ ∀ ⦃x' : V⦄, x' ≠ 0 ∧ ∥x'∥ < δ → ∥f (x + x') - f x - A x'∥ / ∥x'∥ < ε) :=
begin
intros ε Hε,
cases H Hε with δ Hδ,
cases Hδ with Hδ Hδ',
existsi δ,
split,
assumption,
intros x' Hx',
rewrite [-sub_zero x' at Hx' {2}],
have Hδ'' : abs (∥f (x + x') - f x - A x'∥ / ∥x'∥ - 0) < ε, from Hδ' Hx',
have Hpos : ∥f (x + x') - f x - A x'∥ / ∥x'∥ ≥ 0, from div_nonneg_of_nonneg_of_nonneg !norm_nonneg !norm_nonneg,
rewrite [sub_zero at Hδ'', abs_of_nonneg Hpos at Hδ''],
assumption
end
structure frechet_diffable_at [class] (f : V → W) (x : V) :=
(A : V → W) [HA : is_bdd_linear_map A] (is_fr_der : is_frechet_deriv_at f A x)
variables f g : V → W
variable x : V
definition frechet_deriv_at [Hf : frechet_diffable_at f x] : V → W :=
frechet_diffable_at.A _ _ f x
definition frechet_deriv_at_is_bdd_linear_map [instance] (f : V → W) (x : V) [Hf : frechet_diffable_at f x] :
is_bdd_linear_map (frechet_deriv_at f x) :=
frechet_diffable_at.HA _ _ f x
theorem frechet_deriv_spec [Hf : frechet_diffable_at f x] :
(λ h : V, ∥f (x + h) - f x - (frechet_deriv_at f x h) ∥ / ∥ h ∥) ⟶ 0 at 0 :=
frechet_diffable_at.is_fr_der _ _ f x
theorem frechet_deriv_at_const {w : W} : is_frechet_deriv_at (λ v : V, w) (λ v : V, 0) x :=
begin
intros ε Hε,
existsi 1,
split,
exact zero_lt_one,
intros x' Hx',
rewrite [sub_self, sub_zero, norm_zero],
krewrite [zero_div, dist_self],
assumption
end
theorem frechet_deriv_at_smul {c : } {A : V → W} [is_bdd_linear_map A]
(Hf : is_frechet_deriv_at f A x) : is_frechet_deriv_at (λ y, c • f y) (λ y, c • A y) x :=
begin
eapply @decidable.cases_on (abs c = 0),
exact _,
{intro Hc,
have Hz : c = 0, from eq_zero_of_abs_eq_zero Hc,
have Hfz : (λ y : V, (0 : ) • f y) = (λ y : V, 0), from funext (λ y, !zero_smul),
--have Hfz' : (λ x : V, (0 : ) • A x) = (λ x : V, 0), from funext (λ y, !zero_smul),
-- rewriting Hfz' produces type-incorrect term
rewrite [Hz, Hfz, ↑is_frechet_deriv_at],
intro ε Hε,
existsi 1,
split,
exact zero_lt_one,
intro x' Hx',
rewrite [zero_smul, *sub_zero, norm_zero],
krewrite [zero_div, dist_self],
exact Hε},
intro Hcnz,
rewrite ↑is_frechet_deriv_at,
intros ε Hε,
have Hεc : ε / abs c > 0, from div_pos_of_pos_of_pos Hε (lt_of_le_of_ne !abs_nonneg (ne.symm Hcnz)),
cases Hf Hεc with δ Hδ,
cases Hδ with Hδp Hδ,
existsi δ,
split,
assumption,
intro x' Hx',
show abs ((∥c • f (x + x') - c • f x - c • A x'∥ / ∥x'∥ - 0)) < ε, begin
rewrite [sub_zero, -2 smul_sub_left_distrib, norm_smul],
krewrite mul_div_assoc,
rewrite [abs_mul, abs_abs, -{ε}mul_div_cancel' Hcnz],
apply mul_lt_mul_of_pos_left,
have Hδ' : abs (∥f (x + x') - f x - A x'∥ / ∥x'∥ - 0) < ε / abs c, from Hδ Hx',
rewrite sub_zero at Hδ',
apply Hδ',
apply lt_of_le_of_ne,
apply abs_nonneg,
apply ne.symm,
apply Hcnz
end
end
theorem is_frechet_deriv_at_neg {A : V → W} [is_bdd_linear_map A]
(Hf : is_frechet_deriv_at f A x) : is_frechet_deriv_at (λ y, - f y) (λ y, - A y) x :=
begin
apply is_frechet_deriv_at_intro,
intros ε Hε,
cases is_frechet_deriv_at_elim Hf Hε with δ Hδ,
existsi δ,
split,
exact and.left Hδ,
intro x' Hx',
rewrite [-norm_neg, neg_sub, sub_neg_eq_add, sub_add_eq_sub_sub, sub_neg_eq_add,
add_sub_assoc, add.comm, -sub_eq_add_neg],
apply and.right Hδ,
assumption
end
theorem is_frechet_deriv_at_add (A B : V → W) [is_bdd_linear_map A] [is_bdd_linear_map B]
(Hf : is_frechet_deriv_at f A x) (Hg : is_frechet_deriv_at g B x) :
is_frechet_deriv_at (λ y, f y + g y) (λ y, A y + B y) x :=
begin
rewrite ↑is_frechet_deriv_at,
have Hle : ∀ h, ∥f (x + h) + g (x + h) - (f x + g x) - (A h + B h)∥ / ∥h∥ ≤
∥f (x + h) - f x - A h∥ / ∥h∥ + ∥g (x + h) - g x - B h∥ / ∥h∥, begin
intro h,
cases em (∥h∥ > 0) with Hh Hh,
krewrite div_add_div_same,
apply div_le_div_of_le_of_pos,
have Hfeq : f (x + h) + g (x + h) - (f x + g x) - (A h + B h) =
(f (x + h) - f x - A h) + (g (x + h) - g x - B h), by simp,
rewrite Hfeq,
apply norm_triangle,
exact Hh,
have Hhe : ∥h∥ = 0, from eq_of_le_of_ge (le_of_not_gt Hh) !norm_nonneg,
krewrite [Hhe, *div_zero, zero_add],
eapply le.refl
end,
have Hlimge : (λ h, ∥f (x + h) - f x - A h∥ / ∥h∥ + ∥g (x + h) - g x - B h∥ / ∥h∥) ⟶ 0 at 0, begin
rewrite [-zero_add 0],
apply add_converges_to_at,
apply Hf,
apply Hg
end,
have Hlimle : (λ (h : V), (0 : )) ⟶ 0 at 0, from converges_to_at_constant 0 0,
apply converges_to_at_squeeze Hlimle Hlimge,
intro y,
apply div_nonneg_of_nonneg_of_nonneg,
repeat apply norm_nonneg,
apply Hle
end
open topology
theorem continuous_at_of_diffable_at [Hf : frechet_diffable_at f x] : continuous_at f x :=
begin
apply normed_vector_space.continuous_at_intro,
intros ε Hε,
note Hfds := frechet_deriv_spec f x Hε,
cases Hfds with δ Hδ,
cases Hδ with Hδ Hδ',
existsi min δ ((ε / 2) / (ε + op_norm (frechet_deriv_at f x))),
split,
apply lt_min,
exact Hδ,
repeat apply div_pos_of_pos_of_pos,
exact Hε,
apply two_pos,
apply add_pos Hε !op_norm_pos,
intro x' Hx',
cases em (x' - x = 0) with Heq Hneq,
rewrite [eq_of_sub_eq_zero Heq, sub_self, norm_zero], assumption,
have Hx'x : x' - x ≠ 0 ∧ dist (x' - x) 0 < δ, from and.intro Hneq begin
change ∥(x' - x) - 0∥ < δ,
rewrite sub_zero,
apply lt_of_lt_of_le,
apply Hx',
apply min_le_left
end,
have Hx'xp : ∥x' - x∥ > 0, from norm_pos_of_ne_zero Hneq,
have Hδ'' : abs (∥f (x + (x' - x)) - f x - frechet_deriv_at f x (x' - x)∥ / ∥x' - x∥ - 0) < ε, from Hδ' Hx'x,
have Hnn : ∥f (x + (x' - x)) - f x - frechet_deriv_at f x (x' - x)∥ / ∥x' - x∥ ≥ 0,
from div_nonneg_of_nonneg_of_nonneg !norm_nonneg !norm_nonneg,
rewrite [sub_zero at Hδ'', abs_of_nonneg Hnn at Hδ'', add.comm at Hδ'', sub_add_cancel at Hδ''],
note H1 := lt_mul_of_div_lt_of_pos Hx'xp Hδ'',
have H2 : f x' - f x = f x' - f x - frechet_deriv_at f x (x' - x) + frechet_deriv_at f x (x' - x), by simp,
rewrite H2,
apply lt_of_le_of_lt,
apply norm_triangle,
apply lt.trans, --lt_of_lt_of_le,
apply add_lt_add_of_lt_of_le,
apply H1,
apply op_norm_bound (!frechet_deriv_at),
rewrite [-add_halves ε at {2}],
apply add_lt_add,
exact calc
ε * ∥x' - x∥ < ε * min δ ((ε / 2) / (ε + op_norm (frechet_deriv_at f x))) : mul_lt_mul_of_pos_left Hx' Hε
... ≤ ε * ((ε / 2) / (ε + op_norm (frechet_deriv_at f x))) :
mul_le_mul_of_nonneg_left !min_le_right (le_of_lt Hε)
... < ε / 2 : mul_div_self_add_lt (div_pos_of_pos_of_pos Hε two_pos) Hε !op_norm_pos,
let on := op_norm (frechet_deriv_at f x),
exact calc
on * ∥x' - x∥ < on * min δ ((ε / 2) / (ε + on)) : mul_lt_mul_of_pos_left Hx' !op_norm_pos
... ≤ on * ((ε / 2) / (ε + on)) : mul_le_mul_of_nonneg_left !min_le_right (le_of_lt !op_norm_pos)
... < ε / 2 : mul_div_add_self_lt (div_pos_of_pos_of_pos Hε two_pos) Hε !op_norm_pos,
end
end frechet_deriv
/-section comp
variables {U V W : Type}
variables [HU : normed_vector_space U] [HV : normed_vector_space V] [HW : normed_vector_space W]
variables {f : V → W} {g : U → V}
variables {A : V → W} {B : U → V}
variables [HA : is_bdd_linear_map A] [HB : is_bdd_linear_map B]
variable {x : U}
include HU HV HW HA HB
theorem frechet_derivative_at_comp (Hg : is_frechet_deriv_at g B x) (Hf : is_frechet_deriv_at f A (g x)) :
@is_frechet_deriv_at _ _ _ _ (λ y, f (g y)) (λ y, A (B y)) !is_bdd_linear_map_comp x :=
begin
rewrite ↑is_frechet_deriv_at,
intros ε Hε,
end
end comp-/
end analysis