lean2/library/standard/bool.lean

144 lines
4.3 KiB
Text
Raw Normal View History

-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Leonardo de Moura
import logic decidable
using eq_proofs decidable
namespace bool
inductive bool : Type :=
| b0 : bool
| b1 : bool
notation `'0`:max := b0
notation `'1`:max := b1
theorem induction_on {p : bool → Prop} (b : bool) (H0 : p '0) (H1 : p '1) : p b
:= bool_rec H0 H1 b
theorem inhabited_bool [instance] : inhabited bool
:= inhabited_intro b0
definition cond {A : Type} (b : bool) (t e : A)
:= bool_rec e t b
theorem dichotomy (b : bool) : b = '0 b = '1
:= induction_on b (or_inl (refl '0)) (or_inr (refl '1))
theorem cond_b0 {A : Type} (t e : A) : cond '0 t e = e
:= refl (cond '0 t e)
theorem cond_b1 {A : Type} (t e : A) : cond '1 t e = t
:= refl (cond '1 t e)
theorem b0_ne_b1 : ¬ '0 = '1
:= assume H : '0 = '1, absurd
(calc true = cond '1 true false : (cond_b1 _ _)⁻¹
... = cond '0 true false : {H⁻¹}
... = false : cond_b0 _ _)
true_ne_false
theorem decidable_eq [instance] (a b : bool) : decidable (a = b)
:= bool_rec
(bool_rec (inl (refl '0)) (inr b0_ne_b1) b)
(bool_rec (inr (ne_symm b0_ne_b1)) (inl (refl '1)) b)
a
definition bor (a b : bool)
:= bool_rec (bool_rec '0 '1 b) '1 a
theorem bor_b1_left (a : bool) : bor '1 a = '1
:= refl (bor '1 a)
infixl `||`:65 := bor
theorem bor_b1_right (a : bool) : a || '1 = '1
:= induction_on a (refl ('0 || '1)) (refl ('1 || '1))
theorem bor_b0_left (a : bool) : '0 || a = a
:= induction_on a (refl ('0 || '0)) (refl ('0 || '1))
theorem bor_b0_right (a : bool) : a || '0 = a
:= induction_on a (refl ('0 || '0)) (refl ('1 || '0))
theorem bor_id (a : bool) : a || a = a
:= induction_on a (refl ('0 || '0)) (refl ('1 || '1))
theorem bor_comm (a b : bool) : a || b = b || a
:= induction_on a
(induction_on b (refl ('0 || '0)) (refl ('0 || '1)))
(induction_on b (refl ('1 || '0)) (refl ('1 || '1)))
theorem bor_assoc (a b c : bool) : (a || b) || c = a || (b || c)
:= induction_on a
(calc ('0 || b) || c = b || c : {bor_b0_left b}
... = '0 || (b || c) : bor_b0_left (b || c)⁻¹)
(calc ('1 || b) || c = '1 || c : {bor_b1_left b}
... = '1 : bor_b1_left c
... = '1 || (b || c) : bor_b1_left (b || c)⁻¹)
theorem bor_to_or {a b : bool} : a || b = '1 → a = '1 b = '1
:= bool_rec
(assume H : '0 || b = '1,
have Hb : b = '1, from (bor_b0_left b) ▸ H,
or_inr Hb)
(assume H, or_inl (refl '1))
a
definition band (a b : bool)
:= bool_rec '0 (bool_rec '0 '1 b) a
infixl `&&`:75 := band
theorem band_b0_left (a : bool) : '0 && a = '0
:= refl ('0 && a)
theorem band_b1_left (a : bool) : '1 && a = a
:= induction_on a (refl ('1 && '0)) (refl ('1 && '1))
theorem band_b0_right (a : bool) : a && '0 = '0
:= induction_on a (refl ('0 && '0)) (refl ('1 && '0))
theorem band_b1_right (a : bool) : a && '1 = a
:= induction_on a (refl ('0 && '1)) (refl ('1 && '1))
theorem band_id (a : bool) : a && a = a
:= induction_on a (refl ('0 && '0)) (refl ('1 && '1))
theorem band_comm (a b : bool) : a && b = b && a
:= induction_on a
(induction_on b (refl ('0 && '0)) (refl ('0 && '1)))
(induction_on b (refl ('1 && '0)) (refl ('1 && '1)))
theorem band_assoc (a b c : bool) : (a && b) && c = a && (b && c)
:= induction_on a
(calc ('0 && b) && c = '0 && c : {band_b0_left b}
... = '0 : band_b0_left c
... = '0 && (b && c) : band_b0_left (b && c)⁻¹)
(calc ('1 && b) && c = b && c : {band_b1_left b}
... = '1 && (b && c) : band_b1_left (b && c)⁻¹)
theorem band_eq_b1_elim_left {a b : bool} (H : a && b = '1) : a = '1
:= or_elim (dichotomy a)
(assume H0 : a = '0,
absurd_elim (a = '1)
(calc '0 = '0 && b : (band_b0_left _)⁻¹
... = a && b : {H0⁻¹}
... = '1 : H)
b0_ne_b1)
(assume H1 : a = '1, H1)
theorem band_eq_b1_elim_right {a b : bool} (H : a && b = '1) : b = '1
:= band_eq_b1_elim_left (trans (band_comm b a) H)
definition bnot (a : bool) := bool_rec '1 '0 a
prefix `!`:85 := bnot
theorem bnot_bnot (a : bool) : !!a = a
:= induction_on a (refl (!!'0)) (refl (!!'1))
theorem bnot_false : !'0 = '1
:= refl _
theorem bnot_true : !'1 = '0
:= refl _