2016-01-21 20:24:23 +00:00
|
|
|
import types.trunc types.bool
|
2016-01-19 23:21:02 +00:00
|
|
|
open eq bool equiv sigma sigma.ops trunc is_trunc pi
|
|
|
|
|
2016-01-21 20:24:23 +00:00
|
|
|
namespace choice
|
2016-01-19 23:21:02 +00:00
|
|
|
|
|
|
|
universe variable u
|
|
|
|
|
|
|
|
-- 3.8.1. The axiom of choice.
|
2016-01-21 20:24:23 +00:00
|
|
|
definition AC [reducible] := Π (X : Type.{u}) (A : X -> Type.{u}) (P : Π x, A x -> Type.{u}),
|
2016-01-19 23:21:02 +00:00
|
|
|
is_hset X -> (Π x, is_hset (A x)) -> (Π x a, is_hprop (P x a)) ->
|
|
|
|
(Π x, ∥ Σ a, P x a ∥) -> ∥ Σ f, Π x, P x (f x) ∥
|
|
|
|
|
2016-01-21 20:24:23 +00:00
|
|
|
-- 3.8.3. Corresponds to the assertion that
|
|
|
|
-- "the cartesian product of a family of nonempty sets is nonempty".
|
|
|
|
definition AC_cart [reducible] := Π (X : Type.{u}) (A : X -> Type.{u}),
|
|
|
|
is_hset X -> (Π x, is_hset (A x)) -> (Π x, ∥ A x ∥) -> ∥ Π x, A x ∥
|
2016-01-19 23:21:02 +00:00
|
|
|
|
|
|
|
-- A slight variant of AC with a modified (equivalent) codomain.
|
2016-01-21 20:24:23 +00:00
|
|
|
definition AC' [reducible] := Π (X : Type.{u}) (A : X -> Type.{u}) (P : Π x, A x -> Type.{u}),
|
2016-01-19 23:21:02 +00:00
|
|
|
is_hset X -> (Π x, is_hset (A x)) -> (Π x a, is_hprop (P x a))
|
|
|
|
-> (Π x, ∥ Σ a, P x a ∥) -> ∥ Π x, Σ a : A x, P x a ∥
|
|
|
|
|
|
|
|
-- The equivalence of AC and AC' follows from the equivalence of their codomains.
|
|
|
|
definition AC_equiv_AC' : AC.{u} ≃ AC'.{u} :=
|
2016-01-21 20:24:23 +00:00
|
|
|
equiv_of_is_hprop
|
|
|
|
(λ H X A P HX HA HP HI, trunc_functor _ (to_fun !sigma_pi_equiv_pi_sigma) (H X A P HX HA HP HI))
|
|
|
|
(λ H X A P HX HA HP HI, trunc_functor _ (to_inv !sigma_pi_equiv_pi_sigma) (H X A P HX HA HP HI))
|
2016-01-19 23:21:02 +00:00
|
|
|
|
|
|
|
-- AC_cart can be derived from AC' by setting P := λ _ _ , unit.
|
2016-01-20 00:02:17 +00:00
|
|
|
definition AC_cart_of_AC' : AC'.{u} -> AC_cart.{u} :=
|
2016-01-21 20:24:23 +00:00
|
|
|
λ H X A HX HA HI, trunc_functor _ (λ H0 x, (H0 x).1)
|
|
|
|
(H X A (λ x a, lift.{0 u} unit) HX HA (λ x a, !is_trunc_lift)
|
|
|
|
(λ x, trunc_functor _ (λ a, ⟨a, lift.up.{0 u} unit.star⟩) (HI x)))
|
2016-01-19 23:21:02 +00:00
|
|
|
|
|
|
|
-- And the converse, by setting A := λ x, Σ a, P x a.
|
2016-01-20 00:02:17 +00:00
|
|
|
definition AC'_of_AC_cart : AC_cart.{u} -> AC'.{u} :=
|
2016-01-19 23:21:02 +00:00
|
|
|
by intro H X A P HX HA HP HI;
|
|
|
|
apply H X (λ x, Σ a, P x a) HX (λ x, !is_trunc_sigma) HI
|
2016-01-21 20:24:23 +00:00
|
|
|
|
|
|
|
-- Which is enough to show AC' ≃ AC_cart, since both are hprops.
|
2016-01-19 23:21:02 +00:00
|
|
|
definition AC'_equiv_AC_cart : AC'.{u} ≃ AC_cart.{u} :=
|
2016-01-21 20:24:23 +00:00
|
|
|
equiv_of_is_hprop AC_cart_of_AC'.{u} AC'_of_AC_cart.{u}
|
2016-01-19 23:21:02 +00:00
|
|
|
|
2016-01-21 20:24:23 +00:00
|
|
|
-- 3.8.2. AC ≃ AC_cart follows by transitivity.
|
|
|
|
definition AC_equiv_AC_cart : AC.{u} ≃ AC_cart.{u} :=
|
2016-01-19 23:21:02 +00:00
|
|
|
equiv.trans AC_equiv_AC' AC'_equiv_AC_cart
|
|
|
|
|
2016-01-21 20:24:23 +00:00
|
|
|
namespace example385
|
2016-01-19 23:21:02 +00:00
|
|
|
definition X : Type.{1} := Σ A : Type.{0}, ∥ A = bool ∥
|
2016-01-21 20:24:23 +00:00
|
|
|
|
2016-01-19 23:21:02 +00:00
|
|
|
definition x0 : X := ⟨bool, merely.intro _ rfl⟩
|
|
|
|
|
|
|
|
definition Y : X -> Type.{1} := λ x, x0 = x
|
|
|
|
|
2016-01-21 20:24:23 +00:00
|
|
|
definition not_is_hset_X : ¬ is_hset X :=
|
2016-01-19 23:21:02 +00:00
|
|
|
begin
|
|
|
|
intro H, apply not_is_hprop_bool_eq_bool,
|
|
|
|
apply @is_trunc_equiv_closed (x0 = x0),
|
|
|
|
apply equiv.symm !equiv_subtype
|
2016-01-21 20:24:23 +00:00
|
|
|
end
|
2016-01-19 23:21:02 +00:00
|
|
|
|
|
|
|
definition is_hset_x1 (x : X) : is_hset x.1 :=
|
2016-01-21 20:24:23 +00:00
|
|
|
by cases x; induction a_1; cases a_1; exact _
|
2016-01-19 23:21:02 +00:00
|
|
|
|
|
|
|
definition is_hset_Yx (x : X) : is_hset (Y x) :=
|
|
|
|
begin
|
|
|
|
apply @is_trunc_equiv_closed _ _ _ !equiv_subtype,
|
2016-01-21 20:24:23 +00:00
|
|
|
apply @is_trunc_equiv_closed _ _ _ (equiv.symm !eq_equiv_equiv),
|
2016-01-19 23:21:02 +00:00
|
|
|
apply is_trunc_equiv; repeat (apply is_hset_x1)
|
|
|
|
end
|
|
|
|
|
2016-01-21 20:24:23 +00:00
|
|
|
definition trunc_Yx (x : X) : ∥ Y x ∥ :=
|
2016-01-19 23:21:02 +00:00
|
|
|
begin
|
|
|
|
cases x, induction a_1, apply merely.intro,
|
|
|
|
apply to_fun !equiv_subtype, rewrite a_1
|
|
|
|
end
|
|
|
|
|
2016-01-21 20:24:23 +00:00
|
|
|
end example385
|
|
|
|
open example385
|
|
|
|
|
|
|
|
-- 3.8.5. There exists a type X and a family Y : X → U such that each Y(x) is a set,
|
|
|
|
-- but such that (3.8.3) is false.
|
2016-01-20 00:18:54 +00:00
|
|
|
definition X_must_be_hset : Σ (X : Type.{1}) (Y : X -> Type.{1})
|
2016-01-19 23:21:02 +00:00
|
|
|
(HA : Π x : X, is_hset (Y x)), ¬ ((Π x : X, ∥ Y x ∥) -> ∥ Π x : X, Y x ∥) :=
|
|
|
|
⟨X, Y, is_hset_Yx, λ H, trunc.rec_on (H trunc_Yx)
|
2016-01-21 20:24:23 +00:00
|
|
|
(λ H0, not_is_hset_X (@is_trunc_of_is_contr _ _ (is_contr.mk x0 H0)))⟩
|
2016-01-19 23:21:02 +00:00
|
|
|
|
2016-01-21 20:24:23 +00:00
|
|
|
end choice
|