lean2/tests/lean/induction1.lean.expected.out

15 lines
440 B
Text
Raw Normal View History

Set: pp::colors
Set: pp::unicode
Imported 'macros'
Using: Nat
Assumed: Induction
Proved: Comm1
Proved: Comm2
theorem Comm2 : ∀ n m : , n + m = m + n :=
λ n : ,
Induction
(λ x : , n + x == x + n)
(Nat::add_zeror n ⋈ symm (Nat::add_zerol n))
(λ (m : ) (iH : n + m = m + n),
Nat::add_succr n m ⋈ subst (refl (n + m + 1)) iH ⋈ symm (Nat::add_succl m n))