2015-07-29 23:28:48 +00:00
|
|
|
import types.eq types.pi hit.colimit
|
|
|
|
|
|
|
|
open eq is_trunc unit quotient seq_colim equiv
|
2015-08-18 19:39:14 +00:00
|
|
|
axiom mysorry : ∀ {A : Type}, A
|
2015-07-29 23:28:48 +00:00
|
|
|
namespace one_step_tr
|
|
|
|
section
|
|
|
|
parameters {A : Type}
|
|
|
|
variables (a a' : A)
|
|
|
|
|
|
|
|
protected definition R (a a' : A) : Type₀ := unit
|
|
|
|
parameter (A)
|
|
|
|
definition one_step_tr : Type := quotient R
|
|
|
|
parameter {A}
|
|
|
|
definition tr : one_step_tr :=
|
|
|
|
class_of R a
|
|
|
|
|
|
|
|
definition tr_eq : tr a = tr a' :=
|
|
|
|
eq_of_rel _ star
|
|
|
|
|
|
|
|
protected definition rec {P : one_step_tr → Type} (Pt : Π(a : A), P (tr a))
|
|
|
|
(Pe : Π(a a' : A), Pt a =[tr_eq a a'] Pt a') (x : one_step_tr) : P x :=
|
|
|
|
begin
|
|
|
|
fapply (quotient.rec_on x),
|
|
|
|
{ intro a, apply Pt},
|
|
|
|
{ intro a a' H, cases H, apply Pe}
|
|
|
|
end
|
|
|
|
|
|
|
|
protected definition elim {P : Type} (Pt : A → P)
|
|
|
|
(Pe : Π(a a' : A), Pt a = Pt a') (x : one_step_tr) : P :=
|
2016-06-23 22:26:37 +00:00
|
|
|
rec Pt (λa a', pathover_of_eq _ (Pe a a')) x
|
2015-07-29 23:28:48 +00:00
|
|
|
|
|
|
|
theorem rec_tr_eq {P : one_step_tr → Type} (Pt : Π(a : A), P (tr a))
|
|
|
|
(Pe : Π(a a' : A), Pt a =[tr_eq a a'] Pt a') (a a' : A)
|
2016-03-19 15:25:08 +00:00
|
|
|
: apd (rec Pt Pe) (tr_eq a a') = Pe a a' :=
|
2015-07-29 23:28:48 +00:00
|
|
|
!rec_eq_of_rel
|
|
|
|
|
|
|
|
theorem elim_tr_eq {P : Type} (Pt : A → P)
|
|
|
|
(Pe : Π(a a' : A), Pt a = Pt a') (a a' : A)
|
|
|
|
: ap (elim Pt Pe) (tr_eq a a') = Pe a a' :=
|
|
|
|
begin
|
|
|
|
apply eq_of_fn_eq_fn_inv !(pathover_constant (tr_eq a a')),
|
2016-03-19 15:25:08 +00:00
|
|
|
rewrite [▸*,-apd_eq_pathover_of_eq_ap,↑elim,rec_tr_eq],
|
2015-07-29 23:28:48 +00:00
|
|
|
end
|
|
|
|
|
|
|
|
end
|
|
|
|
|
|
|
|
end one_step_tr
|
|
|
|
attribute one_step_tr.rec one_step_tr.elim [recursor 5]
|
|
|
|
open one_step_tr
|
|
|
|
|
|
|
|
definition one_step_tr_up (A B : Type)
|
|
|
|
: (one_step_tr A → B) ≃ Σ(f : A → B), Π(x y : A), f x = f y :=
|
|
|
|
begin
|
|
|
|
fapply equiv.MK,
|
|
|
|
{ intro f, fconstructor, intro a, exact f (tr a), intros, exact ap f !tr_eq},
|
2015-08-18 19:39:14 +00:00
|
|
|
{ exact mysorry},
|
|
|
|
{ exact mysorry},
|
|
|
|
{ exact mysorry},
|
2015-07-29 23:28:48 +00:00
|
|
|
end
|