2015-07-23 23:40:00 +00:00
|
|
|
open nat
|
|
|
|
|
|
|
|
definition g : nat → nat → nat :=
|
|
|
|
sorry
|
|
|
|
|
|
|
|
definition R : nat → nat → Prop :=
|
|
|
|
sorry
|
|
|
|
|
|
|
|
lemma C₁ [congr] : g 0 1 = g 1 0 := -- ERROR
|
|
|
|
sorry
|
|
|
|
|
|
|
|
lemma C₂ [congr] (a b : nat) : g a b = 0 := -- ERROR
|
|
|
|
sorry
|
|
|
|
|
|
|
|
lemma C₃ [congr] (a b : nat) : R (g a b) (g 0 0) := -- ERROR
|
|
|
|
sorry
|
|
|
|
|
2015-12-29 01:52:57 +00:00
|
|
|
lemma C₄ [congr] (A B : Type) : (A → B) = (λ a : nat, B → A) 0 :=
|
2015-07-23 23:40:00 +00:00
|
|
|
sorry
|
|
|
|
|
|
|
|
lemma C₅ [congr] (A B : Type₁) : (A → nat) = (B → nat) := -- ERROR
|
|
|
|
sorry
|
|
|
|
|
|
|
|
lemma C₆ [congr] (A B : Type₁) : A = B := -- ERROR
|
|
|
|
sorry
|
|
|
|
|
|
|
|
lemma C₇ [congr] (a b c d : nat) : (∀ (x : nat), x > c → a = c) → g a b = g c d := -- ERROR
|
|
|
|
sorry
|
|
|
|
|
|
|
|
lemma C₈ [congr] (a b c d : nat) : (c = a) → g a b = g c d := -- ERROR
|
|
|
|
sorry
|
|
|
|
|
|
|
|
lemma C₉ [congr] (a b c d : nat) : (a = c) → (b = c) → g a b = g c d := -- ERROR
|
|
|
|
sorry
|