2015-04-29 00:20:39 +00:00
|
|
|
import data.nat
|
2015-10-13 22:39:03 +00:00
|
|
|
open algebra
|
2015-04-29 00:20:39 +00:00
|
|
|
|
|
|
|
example (a b : Prop) : a → b → a ∧ b :=
|
|
|
|
begin
|
|
|
|
intro Ha, intro Hb,
|
2015-12-10 18:37:55 +00:00
|
|
|
let Ha' := Ha,
|
|
|
|
let Hb' := Hb,
|
2015-04-29 00:20:39 +00:00
|
|
|
let aux := and.intro Ha Hb,
|
|
|
|
exact aux
|
|
|
|
end
|
|
|
|
|
|
|
|
open nat
|
|
|
|
|
|
|
|
example (a b : nat) : a > 0 → b > 0 → a + b + 0 > 0 :=
|
|
|
|
begin
|
|
|
|
intro agt0, intro bgt0,
|
|
|
|
let H := add_pos agt0 bgt0,
|
|
|
|
change a + b > 0,
|
|
|
|
exact H
|
|
|
|
end
|