2015-10-27 18:02:00 -04:00
|
|
|
/-
|
|
|
|
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
|
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
Authors: Floris van Doorn
|
|
|
|
|
|
|
|
colimit_functor ⊣ Δ ⊣ limit_functor
|
|
|
|
-/
|
|
|
|
|
2015-10-27 22:43:47 -04:00
|
|
|
import .colimits ..functor.adjoint
|
2015-10-27 18:02:00 -04:00
|
|
|
|
2015-10-27 22:43:47 -04:00
|
|
|
open eq functor category is_trunc prod nat_trans
|
2015-10-27 18:02:00 -04:00
|
|
|
|
|
|
|
namespace category
|
|
|
|
|
|
|
|
definition limit_functor_adjoint [constructor] (D I : Precategory) [H : has_limits_of_shape D I] :
|
2015-10-27 22:43:47 -04:00
|
|
|
constant_diagram D I ⊣ limit_functor D I :=
|
2015-10-27 18:02:00 -04:00
|
|
|
adjoint.mk'
|
|
|
|
begin
|
2015-10-27 22:43:47 -04:00
|
|
|
fapply natural_iso.MK,
|
|
|
|
{ intro dF η, induction dF with d F, esimp at *,
|
|
|
|
fapply hom_limit,
|
|
|
|
{ exact natural_map η},
|
|
|
|
{ intro i j f, exact !naturality ⬝ !id_right}},
|
|
|
|
{ esimp, intro dF dF' fθ, induction dF with d F, induction dF' with d' F',
|
|
|
|
induction fθ with f θ, esimp at *, apply eq_of_homotopy, intro η,
|
|
|
|
apply eq_hom_limit, intro i,
|
|
|
|
rewrite [assoc, limit_hom_limit_commute,
|
|
|
|
-assoc, assoc (limit_morphism F i), hom_limit_commute]},
|
|
|
|
{ esimp, intro dF f, induction dF with d F, esimp at *,
|
|
|
|
refine !limit_nat_trans ∘n constant_nat_trans I f},
|
|
|
|
{ esimp, intro dF, induction dF with d F, esimp, apply eq_of_homotopy, intro η,
|
|
|
|
apply nat_trans_eq, intro i, esimp, apply hom_limit_commute},
|
|
|
|
{ esimp, intro dF, induction dF with d F, esimp, apply eq_of_homotopy, intro f,
|
|
|
|
symmetry, apply eq_hom_limit, intro i, reflexivity}
|
2015-10-27 18:02:00 -04:00
|
|
|
end
|
|
|
|
|
2015-10-27 22:43:47 -04:00
|
|
|
|
2015-10-27 18:02:00 -04:00
|
|
|
end category
|