lean2/hott/algebra/precategory/adjoint.hlean

144 lines
4.9 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: algebra.precategory.yoneda
Authors: Floris van Doorn
-/
import algebra.category.basic .constructions
open category functor nat_trans eq is_trunc iso equiv prod
variables {C D : Precategory} {F : C ⇒ D}
-- structure adjoint (F : C ⇒ D) (G : D ⇒ C) :=
-- (unit : functor.id ⟹ G ∘f F) -- η
-- (counit : F ∘f G ⟹ functor.id) -- ε
-- (H : (counit ∘nf F) ∘n (nat_trans_of_eq !functor.assoc) ∘n (F ∘fn unit)
-- = nat_trans_of_eq !functor.comp_id_eq_id_comp)
-- (K : (G ∘fn counit) ∘n (nat_trans_of_eq !functor.assoc⁻¹) ∘n (unit ∘nf G)
-- = nat_trans_of_eq !functor.comp_id_eq_id_comp⁻¹)
-- structure is_left_adjoint (F : C ⇒ D) :=
-- (right_adjoint : D ⇒ C) -- G
-- (is_adjoint : adjoint F right_adjoint)
structure is_left_adjoint (F : C ⇒ D) :=
(right_adjoint : D ⇒ C) -- G
(unit : functor.id ⟹ right_adjoint ∘f F) -- η
(counit : F ∘f right_adjoint ⟹ functor.id) -- ε
(H : (counit ∘nf F) ∘n (nat_trans_of_eq !functor.assoc) ∘n (F ∘fn unit)
= nat_trans_of_eq !functor.comp_id_eq_id_comp)
(K : (right_adjoint ∘fn counit) ∘n (nat_trans_of_eq !functor.assoc⁻¹) ∘n (unit ∘nf right_adjoint)
= nat_trans_of_eq !functor.comp_id_eq_id_comp⁻¹)
structure is_equivalence (F : C ⇒ D) extends is_left_adjoint F :=
mk' ::
(is_iso_unit : is_iso unit)
(is_iso_counit : is_iso counit)
structure equivalence (C D : Precategory) :=
(to_functor : C ⇒ D)
(struct : is_equivalence to_functor)
--TODO: review and change
--TODO: make some or all of these structures?
definition faithful (F : C ⇒ D) :=
Π⦃c c' : C⦄, (Π(f f' : c ⟶ c'), to_fun_hom F f = to_fun_hom F f' → f = f')
definition full (F : C ⇒ D) := Π⦃c c' : C⦄ (g : F c ⟶ F c'), Σ(f : c ⟶ c'), F f = g --merely
definition fully_faithful (F : C ⇒ D) := Π⦃c c' : C⦄, is_equiv (@to_fun_hom _ _ F c c')
definition split_essentially_surjective (F : C ⇒ D) :=
Π⦃d : D⦄, Σ(c : C), F c ≅ d
definition essentially_surjective (F : C ⇒ D) :=
Π⦃d : D⦄, Σ(c : C), F c ≅ d --merely
definition is_weak_equivalence (F : C ⇒ D) :=
fully_faithful F × essentially_surjective F
definition is_isomorphism (F : C ⇒ D) :=
fully_faithful F × is_equiv (to_fun_ob F)
structure isomorphism (C D : Precategory) :=
(to_functor : C ⇒ D)
(struct : is_isomorphism to_functor)
namespace category
-- infix `⊣`:55 := adjoint
infix `⋍`:25 := equivalence -- \backsimeq
infix `≌`:25 := isomorphism -- \backcong
--TODO: add shortcuts for Σ⋍≌▹
definition is_hprop_is_left_adjoint {C : Category} {D : Precategory} (F : C ⇒ D)
: is_hprop (is_left_adjoint F) :=
sorry
definition is_equivalence.mk (F : C ⇒ D) (G : D ⇒ C) (η : G ∘f F ≅ functor.id)
(ε : F ∘f G ≅ functor.id) : is_equivalence F :=
sorry
definition full_of_fully_faithful (H : fully_faithful F) : full F :=
sorry
definition faithful_of_fully_faithful (H : fully_faithful F) : faithful F :=
sorry
definition fully_faithful_of_full_of_faithful (H : faithful F) (K : full F) : fully_faithful F :=
sorry
definition fully_faithful_equiv (F : C ⇒ D) : fully_faithful F ≃ (faithful F × full F) :=
sorry
definition is_equivalence_equiv (F : C ⇒ D)
: is_equivalence F ≃ (fully_faithful F × split_essentially_surjective F) :=
sorry
definition is_hprop_is_weak_equivalence (F : C ⇒ D) : is_hprop (is_weak_equivalence F) :=
sorry
definition is_hprop_is_equivalence {C D : Category} (F : C ⇒ D) : is_hprop (is_equivalence F) :=
sorry
definition is_equivalence_equiv_is_weak_equivalence {C D : Category} (F : C ⇒ D)
: is_equivalence F ≃ is_weak_equivalence F :=
sorry
definition is_hprop_is_isomorphism (F : C ⇒ D) : is_hprop (is_isomorphism F) :=
sorry
definition is_isomorphism_equiv1 (F : C ⇒ D) : is_equivalence F
≃ Σ(G : D ⇒ C) (η : functor.id = G ∘f F) (ε : F ∘f G = functor.id),
sorry ▹ ap (λ(H : C ⇒ C), F ∘f H) η = ap (λ(H : D ⇒ D), H ∘f F) ε⁻¹ :=
sorry
definition is_isomorphism_equiv2 (F : C ⇒ D) : is_equivalence F
≃ Σ/-MERELY-/(G : D ⇒ C), functor.id = G ∘f F × F ∘f G = functor.id :=
sorry
definition is_equivalence_of_isomorphism (H : is_isomorphism F) : is_equivalence F :=
sorry
definition is_isomorphism_of_is_equivalence {C D : Category} {F : C ⇒ D} (H : is_equivalence F)
: is_isomorphism F :=
sorry
definition isomorphism_of_eq {C D : Precategory} (p : C = D) : C ≌ D :=
sorry
definition is_equiv_isomorphism_of_eq (C D : Precategory) : is_equiv (@isomorphism_of_eq C D) :=
sorry
definition equivalence_of_eq {C D : Precategory} (p : C = D) : C ⋍ D :=
sorry
definition is_equiv_equivalence_of_eq (C D : Category) : is_equiv (@equivalence_of_eq C D) :=
sorry
end category