lean2/library/data/num/thms.lean

70 lines
2.2 KiB
Text
Raw Normal View History

----------------------------------------------------------------------------------------------------
-- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
-- Released under Apache 2.0 license as described in the file LICENSE.
-- Author: Leonardo de Moura
----------------------------------------------------------------------------------------------------
import data.num.ops logic.eq
open bool
namespace pos_num
theorem succ_not_is_one (a : pos_num) : is_one (succ a) = ff :=
induction_on a rfl (take n iH, rfl) (take n iH, rfl)
theorem pred.succ (a : pos_num) : pred (succ a) = a :=
rec_on a
rfl
(take (n : pos_num) (iH : pred (succ n) = n),
calc
pred (succ (bit1 n)) = cond (is_one (succ n)) one (bit1 (pred (succ n))) : rfl
... = cond ff one (bit1 (pred (succ n))) : succ_not_is_one
... = bit1 (pred (succ n)) : rfl
... = bit1 n : iH)
(take (n : pos_num) (iH : pred (succ n) = n), rfl)
section
variables (a b : pos_num)
theorem add.one_one : one + one = bit0 one :=
rfl
theorem add.one_bit0 : one + (bit0 a) = bit1 a :=
rfl
theorem add.one_bit1 : one + (bit1 a) = succ (bit1 a) :=
rfl
theorem add.bit0_one : (bit0 a) + one = bit1 a :=
rfl
theorem add.bit1_one : (bit1 a) + one = succ (bit1 a) :=
rfl
theorem add.bit0_bit0 : (bit0 a) + (bit0 b) = bit0 (a + b) :=
rfl
theorem add.bit0_bit1 : (bit0 a) + (bit1 b) = bit1 (a + b) :=
rfl
theorem add.bit1_bit0 : (bit1 a) + (bit0 b) = bit1 (a + b) :=
rfl
theorem add.bit1_bit1 : (bit1 a) + (bit1 b) = succ (bit1 (a + b)) :=
rfl
end
theorem mul.one_left (a : pos_num) : one * a = a :=
rfl
theorem mul.one_right (a : pos_num) : a * one = a :=
induction_on a
rfl
(take (n : pos_num) (iH : n * one = n),
calc bit1 n * one = bit0 (n * one) + one : rfl
... = bit0 n + one : iH
... = bit1 n : add.bit0_one)
(take (n : pos_num) (iH : n * one = n),
calc bit0 n * one = bit0 (n * one) : rfl
... = bit0 n : iH)
end pos_num