18 lines
377 B
Text
18 lines
377 B
Text
|
import data.nat
|
||
|
open nat
|
||
|
|
||
|
inductive fn2 (A B C : Type) :=
|
||
|
mk : (A → C) → (B → C) → fn2 A B C
|
||
|
|
||
|
definition to_ac [coercion] {A B C : Type} (f : fn2 A B C) : A → C :=
|
||
|
fn2.rec (λ f g, f) f
|
||
|
|
||
|
definition to_bc [coercion] {A B C : Type} (f : fn2 A B C) : B → C :=
|
||
|
fn2.rec (λ f g, g) f
|
||
|
|
||
|
variable f : fn2 Prop nat nat
|
||
|
variable a : Prop
|
||
|
variable n : nat
|
||
|
check f a
|
||
|
check f n
|