lean2/library/data/int/power.lean

45 lines
1.5 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad
The power function on the integers.
-/
import data.int.basic data.int.order data.int.div algebra.group_power data.nat.power
namespace int
section migrate_algebra
open [classes] algebra
local attribute int.integral_domain [instance]
local attribute int.linear_ordered_comm_ring [instance]
local attribute int.decidable_linear_ordered_comm_ring [instance]
definition pow (a : ) (n : ) : := algebra.pow a n
infix [priority int.prio] ^ := pow
definition nmul (n : ) (a : ) : := algebra.nmul n a
infix [priority int.prio] `⬝` := nmul
definition imul (i : ) (a : ) : := algebra.imul i a
migrate from algebra with int
replacing dvd → dvd, sub → sub, has_le.ge → ge, has_lt.gt → gt, min → min, max → max,
abs → abs, sign → sign, pow → pow, nmul → nmul, imul → imul
hiding add_pos_of_pos_of_nonneg, add_pos_of_nonneg_of_pos,
add_eq_zero_iff_eq_zero_and_eq_zero_of_nonneg_of_nonneg, le_add_of_nonneg_of_le,
le_add_of_le_of_nonneg, lt_add_of_nonneg_of_lt, lt_add_of_lt_of_nonneg,
lt_of_mul_lt_mul_left, lt_of_mul_lt_mul_right, pos_of_mul_pos_left, pos_of_mul_pos_right
end migrate_algebra
section
open nat
theorem of_nat_pow (a n : ) : of_nat (a^n) = (of_nat a)^n :=
begin
induction n with n ih,
apply eq.refl,
rewrite [pow_succ, nat.pow_succ, of_nat_mul, ih]
end
end
end int