2015-03-03 15:39:36 +00:00
|
|
|
/-
|
|
|
|
Copyright (c) 2014 Robert Lewis. All rights reserved.
|
|
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
|
|
|
|
Module: algebra.ordered_field
|
|
|
|
Authors: Robert Lewis
|
|
|
|
|
|
|
|
-/
|
|
|
|
|
|
|
|
import algebra.ordered_ring algebra.field
|
|
|
|
open eq eq.ops
|
|
|
|
|
|
|
|
namespace algebra
|
|
|
|
|
2015-03-05 18:45:09 +00:00
|
|
|
structure linear_ordered_field [class] (A : Type) extends linear_ordered_ring A, field A
|
2015-03-03 15:39:36 +00:00
|
|
|
|
2015-03-05 18:45:09 +00:00
|
|
|
section linear_ordered_field
|
2015-03-03 15:39:36 +00:00
|
|
|
|
|
|
|
variable {A : Type}
|
2015-03-05 18:45:09 +00:00
|
|
|
variables [s : linear_ordered_field A] {a b c : A}
|
2015-03-03 15:39:36 +00:00
|
|
|
include s
|
2015-03-05 18:45:09 +00:00
|
|
|
|
|
|
|
-- ordered ring theorem?
|
|
|
|
-- split H3 into its own lemma
|
|
|
|
theorem gt_of_mul_lt_mul_neg_left (H : c * a < c * b) (Hc : c ≤ 0) : a > b :=
|
|
|
|
have nhc : -c ≥ 0, from neg_nonneg_of_nonpos Hc,
|
|
|
|
have H2 : -(c * b) < -(c * a), from (iff.mp' (neg_lt_neg_iff_lt _ _) H),
|
|
|
|
have H3 : (-c) * b < (-c) * a, from (calc
|
2015-03-19 15:53:04 +00:00
|
|
|
(-c) * b = - (c * b) : neg_mul_eq_neg_mul
|
2015-03-18 21:30:35 +00:00
|
|
|
... < -(c * a) : H2
|
2015-03-19 15:53:04 +00:00
|
|
|
... = (-c) * a : neg_mul_eq_neg_mul
|
2015-03-05 18:45:09 +00:00
|
|
|
),
|
|
|
|
lt_of_mul_lt_mul_left H3 nhc
|
2015-03-03 15:39:36 +00:00
|
|
|
|
2015-03-05 18:45:09 +00:00
|
|
|
-- helpers for following
|
|
|
|
theorem mul_zero_lt_mul_inv_of_pos (H : 0 < a) : a * 0 < a * (1 / a) :=
|
|
|
|
calc
|
2015-03-18 21:30:35 +00:00
|
|
|
a * 0 = 0 : mul_zero
|
|
|
|
... < 1 : zero_lt_one
|
|
|
|
... = a * a⁻¹ : mul_inv_cancel (ne.symm (ne_of_lt H))
|
2015-03-05 18:45:09 +00:00
|
|
|
... = a * (1 / a) : inv_eq_one_div
|
|
|
|
|
|
|
|
theorem mul_zero_lt_mul_inv_of_neg (H : a < 0) : a * 0 < a * (1 / a) :=
|
|
|
|
calc
|
2015-03-18 21:30:35 +00:00
|
|
|
a * 0 = 0 : mul_zero
|
|
|
|
... < 1 : zero_lt_one
|
|
|
|
... = a * a⁻¹ : mul_inv_cancel (ne_of_lt H)
|
2015-03-05 18:45:09 +00:00
|
|
|
... = a * (1 / a) : inv_eq_one_div
|
|
|
|
|
|
|
|
theorem div_pos_of_pos (H : 0 < a) : 0 < 1 / a :=
|
|
|
|
lt_of_mul_lt_mul_left (mul_zero_lt_mul_inv_of_pos H) (le_of_lt H)
|
|
|
|
|
|
|
|
theorem pos_of_div_pos (H : 0 < 1 / a) : 0 < a :=
|
|
|
|
have H1 : 0 < 1 / (1 / a), from div_pos_of_pos H,
|
2015-03-18 21:30:35 +00:00
|
|
|
have H2 : 1 / a ≠ 0, from
|
|
|
|
(assume H3 : 1 / a = 0,
|
|
|
|
have H4 : 1 / (1 / a) = 0, from H3⁻¹ ▸ div_zero,
|
|
|
|
absurd H4 (ne.symm (ne_of_lt H1))),
|
|
|
|
(div_div (ne_zero_of_one_div_ne_zero H2)) ▸ H1
|
2015-03-03 15:39:36 +00:00
|
|
|
|
|
|
|
theorem div_neg_of_neg (H : a < 0) : 1 / a < 0 :=
|
2015-03-05 18:45:09 +00:00
|
|
|
gt_of_mul_lt_mul_neg_left (mul_zero_lt_mul_inv_of_neg H) (le_of_lt H)
|
|
|
|
|
|
|
|
theorem neg_of_div_neg (H : 1 / a < 0) : a < 0 :=
|
2015-03-18 21:30:35 +00:00
|
|
|
have H1 : 0 < - (1 / a), from neg_pos_of_neg H,
|
|
|
|
have Ha : a ≠ 0, from ne_zero_of_one_div_ne_zero (ne_of_lt H),
|
|
|
|
have H2 : 0 < 1 / (-a), from (one_div_neg_eq_neg_one_div Ha)⁻¹ ▸ H1,
|
|
|
|
have H3 : 0 < -a, from pos_of_div_pos H2,
|
|
|
|
neg_of_neg_pos H3
|
|
|
|
|
|
|
|
theorem le_mul_of_ge_one_right (Hb : b ≥ 0) (H : a ≥ 1) : b ≤ b * a :=
|
|
|
|
mul_one _ ▸ (mul_le_mul_of_nonneg_left H Hb)
|
|
|
|
|
|
|
|
theorem lt_mul_of_gt_one_right (Hb : b > 0) (H : a > 1) : b < b * a :=
|
|
|
|
mul_one _ ▸ (mul_lt_mul_of_pos_left H Hb)
|
|
|
|
|
|
|
|
theorem one_le_div_iff_le (Hb : b > 0) : 1 ≤ a / b ↔ b ≤ a :=
|
|
|
|
have Hb' : b ≠ 0, from ne.symm (ne_of_lt Hb),
|
|
|
|
iff.intro
|
|
|
|
(assume H : 1 ≤ a / b,
|
|
|
|
calc
|
|
|
|
b = b : refl
|
|
|
|
... ≤ b * (a / b) : le_mul_of_ge_one_right (le_of_lt Hb) H
|
|
|
|
... = a : mul_div_cancel' Hb')
|
|
|
|
(assume H : b ≤ a,
|
|
|
|
have Hbinv : 1 / b > 0, from div_pos_of_pos Hb, calc
|
|
|
|
1 = b * (1 / b) : mul_one_div_cancel Hb'
|
|
|
|
... ≤ a * (1 / b) : mul_le_mul_of_nonneg_right H (le_of_lt Hbinv)
|
|
|
|
... = a / b : div_eq_mul_one_div)
|
|
|
|
|
2015-03-19 15:53:04 +00:00
|
|
|
theorem le_of_one_le_div (Hb : b > 0) (H : 1 ≤ a / b) : b ≤ a :=
|
|
|
|
(iff.mp (one_le_div_iff_le Hb)) H
|
|
|
|
|
|
|
|
theorem one_le_div_of_le (Hb : b > 0) (H : b ≤ a) : 1 ≤ a / b :=
|
|
|
|
(iff.mp' (one_le_div_iff_le Hb)) H
|
|
|
|
|
2015-03-18 21:30:35 +00:00
|
|
|
theorem one_lt_div_iff_lt (Hb : b > 0) : 1 < a / b ↔ b < a :=
|
|
|
|
have Hb' : b ≠ 0, from ne.symm (ne_of_lt Hb),
|
|
|
|
iff.intro
|
|
|
|
(assume H : 1 < a / b,
|
|
|
|
calc
|
|
|
|
b = b : refl
|
|
|
|
... < b * (a / b) : lt_mul_of_gt_one_right Hb H
|
|
|
|
... = a : mul_div_cancel' Hb')
|
|
|
|
(assume H : b < a,
|
|
|
|
have Hbinv : 1 / b > 0, from div_pos_of_pos Hb, calc
|
|
|
|
1 = b * (1 / b) : mul_one_div_cancel Hb'
|
|
|
|
... < a * (1 / b) : mul_lt_mul_of_pos_right H Hbinv
|
|
|
|
... = a / b : div_eq_mul_one_div)
|
2015-03-03 15:39:36 +00:00
|
|
|
|
2015-03-19 15:53:04 +00:00
|
|
|
theorem lt_of_one_lt_div (Hb : b > 0) (H : 1 < a / b) : b < a :=
|
|
|
|
(iff.mp (one_lt_div_iff_lt Hb)) H
|
|
|
|
|
|
|
|
theorem one_lt_div_of_lt (Hb : b > 0) (H : b < a) : 1 < a / b :=
|
|
|
|
(iff.mp' (one_lt_div_iff_lt Hb)) H
|
|
|
|
|
2015-03-05 18:45:09 +00:00
|
|
|
-- why is mul_le_mul under ordered_ring namespace?
|
|
|
|
theorem le_of_div_le (H : 0 < a) (Hl : 1 / a ≤ 1 / b) : b ≤ a :=
|
2015-03-18 21:30:35 +00:00
|
|
|
have Hb : 0 < b, from pos_of_div_pos (calc
|
|
|
|
0 < 1 / a : div_pos_of_pos H
|
|
|
|
... ≤ 1 / b : Hl),
|
|
|
|
have H' : 1 ≤ a / b, from (calc
|
|
|
|
1 = a / a : div_self (ne.symm (ne_of_lt H))
|
2015-03-05 18:45:09 +00:00
|
|
|
... = a * (1 / a) : div_eq_mul_one_div
|
|
|
|
... ≤ a * (1 / b) : ordered_ring.mul_le_mul_of_nonneg_left Hl (le_of_lt H)
|
2015-03-18 21:30:35 +00:00
|
|
|
... = a / b : div_eq_mul_one_div
|
2015-03-19 15:53:04 +00:00
|
|
|
), le_of_one_le_div Hb H'
|
2015-03-05 18:45:09 +00:00
|
|
|
|
|
|
|
|
2015-03-18 21:30:35 +00:00
|
|
|
theorem lt_of_div_lt (H : 0 < a) (Hl : 1 / a < 1 / b) : b < a :=
|
|
|
|
have Hb : 0 < b, from pos_of_div_pos (calc
|
|
|
|
0 < 1 / a : div_pos_of_pos H
|
|
|
|
... < 1 / b : Hl),
|
2015-03-05 18:45:09 +00:00
|
|
|
have H : 1 < a / b, from (calc
|
2015-03-18 21:30:35 +00:00
|
|
|
1 = a / a : div_self (ne.symm (ne_of_lt H))
|
2015-03-05 18:45:09 +00:00
|
|
|
... = a * (1 / a) : div_eq_mul_one_div
|
|
|
|
... < a * (1 / b) : mul_lt_mul_of_pos_left Hl H
|
2015-03-18 21:30:35 +00:00
|
|
|
... = a / b : div_eq_mul_one_div),
|
2015-03-19 15:53:04 +00:00
|
|
|
lt_of_one_lt_div Hb H
|
2015-03-05 18:45:09 +00:00
|
|
|
|
2015-03-03 15:39:36 +00:00
|
|
|
theorem le_of_div_le_neg (H : b < 0) (Hl : 1 / a ≤ 1 / b) : b ≤ a :=
|
2015-03-18 21:30:35 +00:00
|
|
|
have Ha : a ≠ 0, from ne_of_lt (neg_of_div_neg (calc
|
2015-03-05 18:45:09 +00:00
|
|
|
1 / a ≤ 1 / b : Hl
|
2015-03-18 21:30:35 +00:00
|
|
|
... < 0 : div_neg_of_neg H)),
|
|
|
|
have H' : -b > 0, from neg_pos_of_neg H,
|
|
|
|
have Hl' : - (1 / b) ≤ - (1 / a), from neg_le_neg Hl,
|
|
|
|
have Hl'' : 1 / - b ≤ 1 / - a, from calc
|
|
|
|
1 / -b = - (1 / b) : one_div_neg_eq_neg_one_div (ne_of_lt H)
|
|
|
|
... ≤ - (1 / a) : Hl'
|
|
|
|
... = 1 / -a : one_div_neg_eq_neg_one_div Ha,
|
|
|
|
le_of_neg_le_neg (le_of_div_le H' Hl'')
|
2015-03-03 15:39:36 +00:00
|
|
|
|
2015-03-19 15:53:04 +00:00
|
|
|
theorem lt_of_div_lt_neg (H : b < 0) (Hl : 1 / a < 1 / b) : b < a :=
|
2015-03-18 21:30:35 +00:00
|
|
|
have H1 : b ≤ a, from le_of_div_le_neg H (le_of_lt Hl),
|
|
|
|
have Hn : b ≠ a, from
|
|
|
|
(assume Hn' : b = a,
|
|
|
|
have Hl' : 1 / a = 1 / b, from Hn' ▸ refl _,
|
|
|
|
absurd Hl' (ne_of_lt Hl)),
|
|
|
|
lt_of_le_of_ne H1 Hn
|
2015-03-03 15:39:36 +00:00
|
|
|
|
2015-03-19 15:53:04 +00:00
|
|
|
theorem div_lt_div_of_lt (Ha : 0 < a) (H : a < b) : 1 / b < 1 / a :=
|
|
|
|
lt_of_not_le
|
|
|
|
(assume H',
|
|
|
|
absurd H (not_lt_of_le (le_of_div_le Ha H')))
|
|
|
|
|
|
|
|
theorem div_le_div_of_le (Ha : 0 < a) (H : a ≤ b) : 1 / b ≤ 1 / a :=
|
|
|
|
le_of_not_lt
|
|
|
|
(assume H',
|
|
|
|
absurd H (not_le_of_lt (lt_of_div_lt Ha H')))
|
|
|
|
|
|
|
|
theorem div_lt_div_of_lt_neg (Hb : b < 0) (H : a < b) : 1 / b < 1 / a :=
|
|
|
|
lt_of_not_le
|
|
|
|
(assume H',
|
|
|
|
absurd H (not_lt_of_le (le_of_div_le_neg Hb H')))
|
|
|
|
|
|
|
|
theorem div_le_div_of_le_neg (Hb : b < 0) (H : a ≤ b) : 1 / b ≤ 1 / a :=
|
|
|
|
le_of_not_lt
|
|
|
|
(assume H',
|
|
|
|
absurd H (not_le_of_lt (lt_of_div_lt_neg Hb H')))
|
|
|
|
|
|
|
|
-- belongs in ordered ring?
|
|
|
|
theorem zero_gt_neg_one : -1 < 0 :=
|
|
|
|
neg_zero ▸ (neg_lt_neg zero_lt_one)
|
|
|
|
|
|
|
|
theorem exists_lt : ∃ x, x < a :=
|
|
|
|
have H : a - 1 < a, from add_lt_of_le_of_neg (le.refl _) zero_gt_neg_one,
|
|
|
|
exists.intro _ H
|
|
|
|
|
|
|
|
theorem exists_gt : ∃ x, x > a :=
|
|
|
|
have H : a + 1 > a, from lt_add_of_le_of_pos (le.refl _) zero_lt_one,
|
|
|
|
exists.intro _ H
|
|
|
|
|
|
|
|
theorem one_lt_div (H1 : 0 < a) (H2 : a < 1) : 1 < 1 / a :=
|
|
|
|
one_div_one ▸ div_lt_div_of_lt H1 H2
|
|
|
|
|
|
|
|
theorem one_le_div (H1 : 0 < a) (H2 : a ≤ 1) : 1 ≤ 1 / a :=
|
|
|
|
one_div_one ▸ div_le_div_of_le H1 H2
|
|
|
|
|
|
|
|
theorem neg_one_lt_div_neg (H1 : a < 0) (H2 : -1 < a) : 1 / a < -1 :=
|
|
|
|
one_div_neg_one_eq_neg_one ▸ div_lt_div_of_lt_neg H1 H2
|
|
|
|
|
|
|
|
theorem neg_one_le_div_neg (H1 : a < 0) (H2 : -1 ≤ a) : 1 / a ≤ -1 :=
|
|
|
|
one_div_neg_one_eq_neg_one ▸ div_le_div_of_le_neg H1 H2
|
|
|
|
|
|
|
|
theorem mul_le_of_le_div (Hc : 0 < c) (H : a ≤ b / c) : a * c ≤ b :=
|
|
|
|
div_mul_cancel (ne.symm (ne_of_lt Hc)) ▸ mul_le_mul_of_nonneg_right H (le_of_lt Hc)
|
|
|
|
|
|
|
|
theorem le_div_of_mul_le (Hc : 0 < c) (H : a * c ≤ b) : a ≤ b / c :=
|
|
|
|
calc
|
|
|
|
a = a * 1 : mul_one
|
|
|
|
... = a * (c * (1 / c)) : mul_one_div_cancel (ne.symm (ne_of_lt Hc))
|
|
|
|
... = a * c * (1 / c) : mul.assoc
|
|
|
|
... ≤ b * (1 / c) : mul_le_mul_of_nonneg_right H (le_of_lt (div_pos_of_pos Hc))
|
|
|
|
... = b / c : div_eq_mul_one_div
|
|
|
|
|
|
|
|
theorem mul_lt_of_lt_div (Hc : 0 < c) (H : a < b / c) : a * c < b :=
|
|
|
|
div_mul_cancel (ne.symm (ne_of_lt Hc)) ▸ mul_lt_mul_of_pos_right H Hc
|
|
|
|
|
|
|
|
theorem lt_div_of_mul_lt (Hc : 0 < c) (H : a * c < b) : a < b / c :=
|
|
|
|
calc
|
|
|
|
a = a * 1 : mul_one
|
|
|
|
... = a * (c * (1 / c)) : mul_one_div_cancel (ne.symm (ne_of_lt Hc))
|
|
|
|
... = a * c * (1 / c) : mul.assoc
|
|
|
|
... < b * (1 / c) : mul_lt_mul_of_pos_right H (div_pos_of_pos Hc)
|
|
|
|
... = b / c : div_eq_mul_one_div
|
|
|
|
|
2015-03-05 18:45:09 +00:00
|
|
|
end linear_ordered_field
|
2015-03-18 21:30:35 +00:00
|
|
|
|
|
|
|
structure discrete_linear_ordered_field [class] (A : Type) extends linear_ordered_field A,
|
|
|
|
decidable_linear_ordered_comm_ring A
|
|
|
|
|
|
|
|
section discrete_linear_ordered_field
|
|
|
|
|
|
|
|
variable {A : Type}
|
|
|
|
variables [s : discrete_linear_ordered_field A] {a b c : A}
|
|
|
|
include s
|
|
|
|
|
|
|
|
|
|
|
|
theorem dec_eq_of_dec_lt : ∀ x y : A, decidable (x = y) :=
|
|
|
|
take x y,
|
|
|
|
decidable.by_cases
|
|
|
|
(assume H : x < y, decidable.inr (ne_of_lt H))
|
|
|
|
(assume H : ¬ x < y,
|
|
|
|
decidable.by_cases
|
|
|
|
(assume H' : y < x, decidable.inr (ne.symm (ne_of_lt H')))
|
|
|
|
(assume H' : ¬ y < x,
|
|
|
|
decidable.inl (le.antisymm (le_of_not_lt H') (le_of_not_lt H))))
|
|
|
|
|
|
|
|
definition discrete_linear_ordered_field.to_discrete_field [instance] [reducible] [coercion]
|
|
|
|
[s : discrete_linear_ordered_field A] : discrete_field A :=
|
2015-03-19 15:53:04 +00:00
|
|
|
⦃ discrete_field, s, decidable_equality := dec_eq_of_dec_lt⦄
|
2015-03-18 21:30:35 +00:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
end discrete_linear_ordered_field
|
2015-03-03 15:39:36 +00:00
|
|
|
end algebra
|