lean2/src/kernel/environment.cpp

166 lines
6.1 KiB
C++
Raw Normal View History

/*
Copyright (c) 2013 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#include <algorithm>
#include <vector>
#include <limits>
#include "environment.h"
#include "exception.h"
#include "debug.h"
namespace lean {
constexpr unsigned uninit = std::numeric_limits<int>::max();
/** \brief Implementation of the Lean environment. */
struct environment::imp {
std::vector<std::vector<unsigned>> m_uvar_distances;
std::vector<level> m_uvars;
/** \brief Return v - k. It throws an exception if there is a underflow. */
static int sub(int v, unsigned k) {
long long r = static_cast<long long>(v) - static_cast<long long>(k);
if (r < std::numeric_limits<int>::min())
throw exception("universe overflow");
return static_cast<int>(r);
}
/** \brief Return v + k. It throws an exception if there is an overflow. */
static int add(int v, unsigned k) {
long long r = static_cast<long long>(v) + static_cast<long long>(k);
if (r > std::numeric_limits<int>::max() - 1)
throw exception("universe overflow");
return static_cast<int>(r);
}
/** \brief Return v + k. It throws an exception if there is an overflow. */
static unsigned add(unsigned v, unsigned k) {
unsigned long long r = static_cast<unsigned long long>(v) + static_cast<unsigned long long>(k);
if (r > std::numeric_limits<int>::max() - 1)
throw exception("universe overflow");
return static_cast<unsigned>(r);
}
/** \brief Return true iff l1 >= l2 + k */
bool is_ge(level const & l1, level const & l2, int k) {
switch (kind(l2)) {
case level_kind::UVar:
switch (kind(l1)) {
case level_kind::UVar: {
unsigned d = m_uvar_distances[uvar_idx(l1)][uvar_idx(l2)];
return d != uninit && (k < 0 || (k >= 0 && d >= static_cast<unsigned>(k)));
}
case level_kind::Lift: return is_ge(lift_of(l1), l2, sub(k, lift_offset(l1)));
case level_kind::Max: return std::any_of(max_begin_levels(l1), max_end_levels(l1), [&](level const & l) { return is_ge(l, l2, k); });
}
case level_kind::Lift: return is_ge(l1, lift_of(l2), add(k, lift_offset(l2)));
case level_kind::Max: return std::all_of(max_begin_levels(l2), max_end_levels(l2), [&](level const & l) { return is_ge(l1, l, k); });
}
lean_unreachable();
return false;
}
bool is_ge(level const & l1, level const & l2) {
return is_ge(l1, l2, 0);
}
level add_var(name const & n) {
if (std::any_of(m_uvars.begin(), m_uvars.end(), [&](level const & l){ return uvar_name(l) == n; }))
throw exception("invalid universe variable declaration, it has already been declared");
unsigned idx = m_uvars.size();
level r(n, idx);
m_uvars.push_back(r);
std::for_each(m_uvar_distances.begin(), m_uvar_distances.end(), [](std::vector<unsigned> & v) { v.push_back(uninit); });
m_uvar_distances.push_back(std::vector<unsigned>());
std::vector<unsigned> & d = m_uvar_distances.back();
d.resize(m_uvars.size(), static_cast<unsigned>(uninit));
d[idx] = 0;
return r;
}
void add_constraint(uvar v1, uvar v2, unsigned d) {
lean_assert(v1 != v2);
unsigned num = m_uvar_distances.size();
lean_assert(v1 < num);
lean_assert(v2 < num);
std::vector<unsigned> & v1_dists = m_uvar_distances[v1];
if (v1_dists[v2] == uninit || d >= v1_dists[v2]) {
v1_dists[v2] = d;
// update forward
std::vector<unsigned> & v2_dists = m_uvar_distances[v2];
for (uvar v3 = 0; v3 < num; v3++) {
if (v2_dists[v3] != uninit) {
lean_assert(v1 != v3);
unsigned d_v1_v3 = add(d, v2_dists[v3]);
if (v1_dists[v3] == uninit || d_v1_v3 >= v1_dists[v3])
v1_dists[v3] = d_v1_v3;
}
}
}
}
void add_constraints(uvar v1, level const & l, unsigned k) {
switch (kind(l)) {
case level_kind::UVar: add_constraint(v1, uvar_idx(l), k); return;
case level_kind::Lift: add_constraints(v1, lift_of(l), add(k, lift_offset(l))); return;
case level_kind::Max: std::for_each(max_begin_levels(l), max_end_levels(l), [&](level const & l1) { add_constraints(v1, l1, k); }); return;
}
lean_unreachable();
}
level define_uvar(name const & n, level const & l) {
level r = add_var(n);
add_constraints(uvar_idx(r), l, 0);
return r;
}
void init_uvars() {
m_uvars.push_back(level());
m_uvar_distances.push_back(std::vector<unsigned>());
m_uvar_distances.back().push_back(0);
lean_assert(uvar_idx(m_uvars.back()) == 0);
}
void display_uvars(std::ostream & out) const {
std::for_each(m_uvars.begin(), m_uvars.end(),
[&](level const & u) {
std::vector<unsigned> const & u_dists = m_uvar_distances[uvar_idx(u)];
unsigned num = u_dists.size();
for (uvar v2 = 0; v2 < num; v2++) {
if (v2 != uvar_idx(u) && u_dists[v2] != uninit) {
out << uvar_name(u) << " >= " << uvar_name(m_uvars[v2]);
if (u_dists[v2] > 0)
out << " + " << u_dists[v2];
out << "\n";
}
}
});
}
imp() {
init_uvars();
}
};
environment::environment():
m_imp(new imp) {
}
environment::~environment() {
}
level environment::define_uvar(name const & n, level const & l) {
return m_imp->define_uvar(n, l);
}
bool environment::is_ge(level const & l1, level const & l2) const {
return m_imp->is_ge(l1, l2);
}
void environment::display_uvars(std::ostream & out) const {
m_imp->display_uvars(out);
}
}