lean2/library/data/nat/order.lean

422 lines
16 KiB
Text
Raw Normal View History

/-
Copyright (c) 2014 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Module: data.nat.order
Authors: Floris van Doorn, Leonardo de Moura, Jeremy Avigad
The order relation on the natural numbers.
-/
import data.nat.basic algebra.ordered_ring
open eq.ops
namespace nat
/- lt and le -/
theorem le_of_lt_or_eq {m n : } (H : m < n m = n) : m ≤ n :=
or.elim H (take H1, le_of_lt H1) (take H1, H1 ▸ !le.refl)
theorem lt.by_cases {a b : } {P : Prop}
(H1 : a < b → P) (H2 : a = b → P) (H3 : b < a → P) : P :=
or.elim !lt.trichotomy
(assume H, H1 H)
(assume H, or.elim H (assume H', H2 H') (assume H', H3 H'))
theorem lt_or_eq_of_le {m n : } (H : m ≤ n) : m < n m = n :=
lt.by_cases
(assume H1 : m < n, or.inl H1)
(assume H1 : m = n, or.inr H1)
(assume H1 : m > n, absurd (lt_of_le_of_lt H H1) !lt.irrefl)
theorem le_iff_lt_or_eq (m n : ) : m ≤ n ↔ m < n m = n :=
iff.intro lt_or_eq_of_le le_of_lt_or_eq
theorem lt_of_le_and_ne {m n : } (H1 : m ≤ n) (H2 : m ≠ n) : m < n :=
or.elim (lt_or_eq_of_le H1)
(take H3 : m < n, H3)
(take H3 : m = n, absurd H3 H2)
theorem lt_iff_le_and_ne (m n : ) : m < n ↔ m ≤ n ∧ m ≠ n :=
iff.intro
(take H, and.intro (le_of_lt H) (take H1, lt.irrefl _ (H1 ▸ H)))
(take H, lt_of_le_and_ne (and.elim_left H) (and.elim_right H))
theorem le_add_right (n k : ) : n ≤ n + k :=
nat.induction_on k
(calc n ≤ n : le.refl n
... = n + zero : add_zero)
(λ k (ih : n ≤ n + k), calc
n ≤ succ (n + k) : le_succ_of_le ih
... = n + succ k : add_succ)
theorem le_add_left (n m : ): n ≤ m + n :=
!add.comm ▸ !le_add_right
theorem le.intro {n m k : } (h : n + k = m) : n ≤ m :=
h ▸ le_add_right n k
theorem le.elim {n m : } (h : n ≤ m) : ∃k, n + k = m :=
le.rec_on h
(exists.intro 0 rfl)
(λ m (h : n < m), lt.rec_on h
(exists.intro 1 rfl)
(λ b hlt (ih : ∃ (k : ), n + k = b),
obtain (k : ) (h : n + k = b), from ih,
exists.intro (succ k) (calc
n + succ k = succ (n + k) : add_succ
... = succ b : h)))
theorem le.total {m n : } : m ≤ n n ≤ m :=
lt.by_cases
(assume H : m < n, or.inl (le_of_lt H))
(assume H : m = n, or.inl (H ▸ !le.refl))
(assume H : m > n, or.inr (le_of_lt H))
/- addition -/
theorem add_le_add_left {n m : } (H : n ≤ m) (k : ) : k + n ≤ k + m :=
obtain (l : ) (Hl : n + l = m), from le.elim H,
le.intro
(calc
k + n + l = k + (n + l) : !add.assoc
... = k + m : {Hl})
theorem add_le_add_right {n m : } (H : n ≤ m) (k : ) : n + k ≤ m + k :=
!add.comm ▸ !add.comm ▸ add_le_add_left H k
theorem le_of_add_le_add_left {k n m : } (H : k + n ≤ k + m) : n ≤ m :=
obtain (l : ) (Hl : k + n + l = k + m), from (le.elim H),
le.intro (add.cancel_left
(calc
k + (n + l) = k + n + l : (!add.assoc)⁻¹
... = k + m : Hl))
theorem add_lt_add_left {n m : } (H : n < m) (k : ) : k + n < k + m :=
lt_of_succ_le (!add_succ ▸ add_le_add_left (succ_le_of_lt H) k)
theorem add_lt_add_right {n m : } (H : n < m) (k : ) : n + k < m + k :=
!add.comm ▸ !add.comm ▸ add_lt_add_left H k
theorem lt_add_of_pos_right {n k : } (H : k > 0) : n < n + k :=
!add_zero ▸ add_lt_add_left H n
/- multiplication -/
theorem mul_le_mul_left {n m : } (H : n ≤ m) (k : ) : k * n ≤ k * m :=
obtain (l : ) (Hl : n + l = m), from le.elim H,
have H2 : k * n + k * l = k * m, by rewrite [-mul.left_distrib, Hl],
le.intro H2
theorem mul_le_mul_right {n m : } (H : n ≤ m) (k : ) : n * k ≤ m * k :=
!mul.comm ▸ !mul.comm ▸ (mul_le_mul_left H k)
theorem mul_le_mul {n m k l : } (H1 : n ≤ k) (H2 : m ≤ l) : n * m ≤ k * l :=
le.trans (mul_le_mul_right H1 m) (mul_le_mul_left H2 k)
theorem mul_lt_mul_of_pos_left {n m k : } (H : n < m) (Hk : k > 0) : k * n < k * m :=
have H2 : k * n < k * n + k, from lt_add_of_pos_right Hk,
have H3 : k * n + k ≤ k * m, from !mul_succ ▸ mul_le_mul_left (succ_le_of_lt H) k,
lt_of_lt_of_le H2 H3
theorem mul_lt_mul_of_pos_right {n m k : } (H : n < m) (Hk : k > 0) : n * k < m * k :=
!mul.comm ▸ !mul.comm ▸ mul_lt_mul_of_pos_left H Hk
theorem le.antisymm {n m : } (H1 : n ≤ m) (H2 : m ≤ n) : n = m :=
obtain (k : ) (Hk : n + k = m), from (le.elim H1),
obtain (l : ) (Hl : m + l = n), from (le.elim H2),
have L1 : k + l = 0, from
add.cancel_left
(calc
n + (k + l) = n + k + l : (!add.assoc)⁻¹
... = m + l : {Hk}
... = n : Hl
... = n + 0 : (!add_zero)⁻¹),
have L2 : k = 0, from eq_zero_of_add_eq_zero_right L1,
calc
n = n + 0 : (!add_zero)⁻¹
... = n + k : {L2⁻¹}
... = m : Hk
theorem zero_le (n : ) : 0 ≤ n :=
le.intro !zero_add
/- nat is an instance of a linearly ordered semiring -/
section
open [classes] algebra
protected definition linear_ordered_semiring [instance] [reducible] :
algebra.linear_ordered_semiring nat :=
⦃ algebra.linear_ordered_semiring, nat.comm_semiring,
add_left_cancel := @add.cancel_left,
add_right_cancel := @add.cancel_right,
lt := lt,
le := le,
le_refl := le.refl,
le_trans := @le.trans,
le_antisymm := @le.antisymm,
le_total := @le.total,
le_iff_lt_or_eq := @le_iff_lt_or_eq,
lt_iff_le_ne := lt_iff_le_and_ne,
add_le_add_left := @add_le_add_left,
le_of_add_le_add_left := @le_of_add_le_add_left,
zero_ne_one := ne.symm (succ_ne_zero zero),
mul_le_mul_of_nonneg_left := (take a b c H1 H2, mul_le_mul_left H1 c),
mul_le_mul_of_nonneg_right := (take a b c H1 H2, mul_le_mul_right H1 c),
mul_lt_mul_of_pos_left := @mul_lt_mul_of_pos_left,
mul_lt_mul_of_pos_right := @mul_lt_mul_of_pos_right ⦄
migrate from algebra with nat
replacing has_le.ge → ge, has_lt.gt → gt
hiding pos_of_mul_pos_left, pos_of_mul_pos_right, lt_of_mul_lt_mul_left, lt_of_mul_lt_mul_right
end
section port_algebra
theorem add_pos_left : ∀{a : }, 0 < a → ∀b : , 0 < a + b :=
take a H b, @algebra.add_pos_of_pos_of_nonneg _ _ a b H !zero_le
theorem add_pos_right : ∀{a : }, 0 < a → ∀b : , 0 < b + a :=
take a H b, !add.comm ▸ add_pos_left H b
theorem add_eq_zero_iff_eq_zero_and_eq_zero : ∀{a b : },
a + b = 0 ↔ a = 0 ∧ b = 0 :=
take a b : ,
@algebra.add_eq_zero_iff_eq_zero_and_eq_zero_of_nonneg_of_nonneg _ _ a b !zero_le !zero_le
theorem le_add_of_le_left : ∀{a b c : }, b ≤ c → b ≤ a + c :=
take a b c H, @algebra.le_add_of_nonneg_of_le _ _ a b c !zero_le H
theorem le_add_of_le_right : ∀{a b c : }, b ≤ c → b ≤ c + a :=
take a b c H, @algebra.le_add_of_le_of_nonneg _ _ a b c H !zero_le
theorem lt_add_of_lt_left : ∀{b c : }, b < c → ∀a, b < a + c :=
take b c H a, @algebra.lt_add_of_nonneg_of_lt _ _ a b c !zero_le H
theorem lt_add_of_lt_right : ∀{b c : }, b < c → ∀a, b < c + a :=
take b c H a, @algebra.lt_add_of_lt_of_nonneg _ _ a b c H !zero_le
theorem lt_of_mul_lt_mul_left : ∀{a b c : }, c * a < c * b → a < b :=
take a b c H, @algebra.lt_of_mul_lt_mul_left _ _ a b c H !zero_le
theorem lt_of_mul_lt_mul_right : ∀{a b c : }, a * c < b * c → a < b :=
take a b c H, @algebra.lt_of_mul_lt_mul_right _ _ a b c H !zero_le
theorem pos_of_mul_pos_left : ∀{a b : }, 0 < a * b → 0 < b :=
take a b H, @algebra.pos_of_mul_pos_left _ _ a b H !zero_le
theorem pos_of_mul_pos_right : ∀{a b : }, 0 < a * b → 0 < a :=
take a b H, @algebra.pos_of_mul_pos_right _ _ a b H !zero_le
end port_algebra
theorem zero_le_one : 0 ≤ 1 := dec_trivial
theorem zero_lt_one : 0 < 1 := dec_trivial
/- properties specific to nat -/
theorem lt_intro {n m k : } (H : succ n + k = m) : n < m :=
lt_of_succ_le (le.intro H)
theorem lt_elim {n m : } (H : n < m) : ∃k, succ n + k = m :=
le.elim (succ_le_of_lt H)
theorem lt_add_succ (n m : ) : n < n + succ m :=
lt_intro !succ_add_eq_succ_add
theorem eq_zero_of_le_zero {n : } (H : n ≤ 0) : n = 0 :=
obtain (k : ) (Hk : n + k = 0), from le.elim H,
eq_zero_of_add_eq_zero_right Hk
/- succ and pred -/
theorem lt_iff_succ_le (m n : nat) : m < n ↔ succ m ≤ n :=
iff.intro succ_le_of_lt lt_of_succ_le
theorem not_succ_le_zero (n : ) : ¬ succ n ≤ 0 :=
(assume H : succ n ≤ 0,
have H2 : succ n = 0, from eq_zero_of_le_zero H,
absurd H2 !succ_ne_zero)
theorem succ_le_succ {n m : } (H : n ≤ m) : succ n ≤ succ m :=
!add_one ▸ !add_one ▸ add_le_add_right H 1
theorem le_of_succ_le_succ {n m : } (H : succ n ≤ succ m) : n ≤ m :=
le_of_add_le_add_right ((!add_one)⁻¹ ▸ (!add_one)⁻¹ ▸ H)
theorem self_le_succ (n : ) : n ≤ succ n :=
le.intro !add_one
theorem succ_le_or_eq_of_le {n m : } (H : n ≤ m) : succ n ≤ m n = m :=
or.elim (lt_or_eq_of_le H)
(assume H1 : n < m, or.inl (succ_le_of_lt H1))
(assume H1 : n = m, or.inr H1)
theorem le_succ_of_pred_le {n m : } : pred n ≤ m → n ≤ succ m :=
nat.cases_on n
(assume H : pred 0 ≤ m, !zero_le)
(take n',
assume H : pred (succ n') ≤ m,
have H1 : n' ≤ m, from pred_succ n' ▸ H,
succ_le_succ H1)
theorem pred_le_of_le_succ {n m : } : n ≤ succ m → pred n ≤ m :=
nat.cases_on n
(assume H, !pred_zero⁻¹ ▸ zero_le m)
(take n',
assume H : succ n' ≤ succ m,
have H1 : n' ≤ m, from le_of_succ_le_succ H,
!pred_succ⁻¹ ▸ H1)
theorem succ_le_of_le_pred {n m : } : succ n ≤ m → n ≤ pred m :=
nat.cases_on m
(assume H, absurd H !not_succ_le_zero)
(take m',
assume H : succ n ≤ succ m',
have H1 : n ≤ m', from le_of_succ_le_succ H,
!pred_succ⁻¹ ▸ H1)
theorem pred_le_pred_of_le {n m : } : n ≤ m → pred n ≤ pred m :=
nat.cases_on n
(assume H, pred_zero⁻¹ ▸ zero_le (pred m))
(take n',
assume H : succ n' ≤ m,
!pred_succ⁻¹ ▸ succ_le_of_le_pred H)
theorem lt_of_pred_lt_pred {n m : } (H : pred n < pred m) : n < m :=
lt_of_not_le
(take H1 : m ≤ n,
not_lt_of_le (pred_le_pred_of_le H1) H)
theorem le_or_eq_succ_of_le_succ {n m : } (H : n ≤ succ m) : n ≤ m n = succ m :=
or_of_or_of_imp_left (succ_le_or_eq_of_le H)
(take H2 : succ n ≤ succ m, show n ≤ m, from le_of_succ_le_succ H2)
theorem le_pred_self (n : ) : pred n ≤ n :=
nat.cases_on n
(pred_zero⁻¹ ▸ !le.refl)
(take k : , (!pred_succ)⁻¹ ▸ !self_le_succ)
theorem succ_pos (n : ) : 0 < succ n :=
!zero_lt_succ
theorem succ_pred_of_pos {n : } (H : n > 0) : succ (pred n) = n :=
(or_resolve_right (eq_zero_or_eq_succ_pred n) (ne.symm (ne_of_lt H)))⁻¹
theorem exists_eq_succ_of_lt {n m : } (H : n < m) : exists k, m = succ k :=
discriminate
(take (Hm : m = 0), absurd (Hm ▸ H) !not_lt_zero)
(take (l : ) (Hm : m = succ l), exists.intro l Hm)
theorem lt_succ_self (n : ) : n < succ n :=
lt.base n
theorem le_of_lt_succ {n m : } (H : n < succ m) : n ≤ m :=
le_of_succ_le_succ (succ_le_of_lt H)
/- other forms of induction -/
protected theorem strong_induction_on {P : nat → Prop} (n : ) (H : ∀n, (∀m, m < n → P m) → P n) :
P n :=
have H1 : ∀ {n m : nat}, m < n → P m, from
take n,
nat.induction_on n
(show ∀m, m < 0 → P m, from take m H, absurd H !not_lt_zero)
(take n',
assume IH : ∀ {m : nat}, m < n' → P m,
have H2: P n', from H n' @IH,
show ∀m, m < succ n' → P m, from
take m,
assume H3 : m < succ n',
or.elim (lt_or_eq_of_le (le_of_lt_succ H3))
(assume H4: m < n', IH H4)
(assume H4: m = n', H4⁻¹ ▸ H2)),
H1 !lt_succ_self
protected theorem case_strong_induction_on {P : nat → Prop} (a : nat) (H0 : P 0)
(Hind : ∀(n : nat), (∀m, m ≤ n → P m) → P (succ n)) : P a :=
strong_induction_on a (
take n,
show (∀m, m < n → P m) → P n, from
nat.cases_on n
(assume H : (∀m, m < 0 → P m), show P 0, from H0)
(take n,
assume H : (∀m, m < succ n → P m),
show P (succ n), from
Hind n (take m, assume H1 : m ≤ n, H _ (lt_succ_of_le H1))))
/- pos -/
theorem by_cases_zero_pos {P : → Prop} (y : ) (H0 : P 0) (H1 : ∀ {y : nat}, y > 0 → P y) : P y :=
nat.cases_on y H0 (take y, H1 !succ_pos)
theorem eq_zero_or_pos (n : ) : n = 0 n > 0 :=
or_of_or_of_imp_left
(or.swap (lt_or_eq_of_le !zero_le))
(take H : 0 = n, H⁻¹)
theorem pos_of_ne_zero {n : } (H : n ≠ 0) : n > 0 :=
or.elim !eq_zero_or_pos (take H2 : n = 0, absurd H2 H) (take H2 : n > 0, H2)
theorem ne_zero_of_pos {n : } (H : n > 0) : n ≠ 0 :=
ne.symm (ne_of_lt H)
theorem exists_eq_succ_of_pos {n : } (H : n > 0) : exists l, n = succ l :=
exists_eq_succ_of_lt H
theorem pos_of_dvd_of_pos {m n : } (H1 : (m | n)) (H2 : n > 0) : m > 0 :=
pos_of_ne_zero
(assume H3 : m = 0,
have H4 : n = 0, from eq_zero_of_zero_dvd (H3 ▸ H1),
ne_of_lt H2 H4⁻¹)
/- multiplication -/
theorem mul_lt_mul_of_le_of_lt {n m k l : } (Hk : k > 0) (H1 : n ≤ k) (H2 : m < l) :
n * m < k * l :=
lt_of_le_of_lt (mul_le_mul_right H1 m) (mul_lt_mul_of_pos_left H2 Hk)
theorem mul_lt_mul_of_lt_of_le {n m k l : } (Hl : l > 0) (H1 : n < k) (H2 : m ≤ l) :
n * m < k * l :=
lt_of_le_of_lt (mul_le_mul_left H2 n) (mul_lt_mul_of_pos_right H1 Hl)
theorem mul_lt_mul_of_le_of_le {n m k l : } (H1 : n < k) (H2 : m < l) : n * m < k * l :=
have H3 : n * m ≤ k * m, from mul_le_mul_right (le_of_lt H1) m,
have H4 : k * m < k * l, from mul_lt_mul_of_pos_left H2 (lt_of_le_of_lt !zero_le H1),
lt_of_le_of_lt H3 H4
theorem eq_of_mul_eq_mul_left {m k n : } (Hn : n > 0) (H : n * m = n * k) : m = k :=
have H2 : n * m ≤ n * k, from H ▸ !le.refl,
have H3 : n * k ≤ n * m, from H ▸ !le.refl,
have H4 : m ≤ k, from le_of_mul_le_mul_left H2 Hn,
have H5 : k ≤ m, from le_of_mul_le_mul_left H3 Hn,
le.antisymm H4 H5
theorem eq_of_mul_eq_mul_right {n m k : } (Hm : m > 0) (H : n * m = k * m) : n = k :=
eq_of_mul_eq_mul_left Hm (!mul.comm ▸ !mul.comm ▸ H)
theorem eq_zero_or_eq_of_mul_eq_mul_left {n m k : } (H : n * m = n * k) : n = 0 m = k :=
or_of_or_of_imp_right !eq_zero_or_pos
(assume Hn : n > 0, eq_of_mul_eq_mul_left Hn H)
theorem eq_zero_or_eq_of_mul_eq_mul_right {n m k : } (H : n * m = k * m) : m = 0 n = k :=
eq_zero_or_eq_of_mul_eq_mul_left (!mul.comm ▸ !mul.comm ▸ H)
theorem eq_one_of_mul_eq_one_right {n m : } (H : n * m = 1) : n = 1 :=
have H2 : n * m > 0, from H⁻¹ ▸ !succ_pos,
have H3 : n > 0, from pos_of_mul_pos_right H2,
have H4 : m > 0, from pos_of_mul_pos_left H2,
or.elim (le_or_gt n 1)
(assume H5 : n ≤ 1,
show n = 1, from le.antisymm H5 (succ_le_of_lt H3))
(assume H5 : n > 1,
have H6 : n * m ≥ 2 * 1, from mul_le_mul (succ_le_of_lt H5) (succ_le_of_lt H4),
have H7 : 1 ≥ 2, from !mul_one ▸ H ▸ H6,
absurd !lt_succ_self (not_lt_of_le H7))
theorem eq_one_of_mul_eq_one_left {n m : } (H : n * m = 1) : m = 1 :=
eq_one_of_mul_eq_one_right (!mul.comm ▸ H)
theorem eq_one_of_mul_eq_self_left {n m : } (Hpos : n > 0) (H : m * n = n) : m = 1 :=
eq_of_mul_eq_mul_right Hpos (H ⬝ !one_mul⁻¹)
theorem eq_one_of_mul_eq_self_right {n m : } (Hpos : m > 0) (H : m * n = m) : n = 1 :=
eq_one_of_mul_eq_self_left Hpos (!mul.comm ▸ H)
theorem eq_one_of_dvd_one {n : } (H : (n | 1)) : n = 1 :=
dvd.elim H
(take m,
assume H1 : 1 = n * m,
eq_one_of_mul_eq_one_right H1⁻¹)
end nat