19 lines
270 B
Text
19 lines
270 B
Text
|
open nat
|
||
|
|
||
|
definition fib : nat → nat,
|
||
|
fib 0 := 1,
|
||
|
fib 1 := 1,
|
||
|
fib (x+2) := fib x + fib (x+1)
|
||
|
|
||
|
theorem fib0 : fib 0 = 1 :=
|
||
|
rfl
|
||
|
|
||
|
theorem fib1 : fib 1 = 1 :=
|
||
|
rfl
|
||
|
|
||
|
theorem fib_succ_succ (a : nat) : fib (a+2) = fib a + fib (a+1) :=
|
||
|
rfl
|
||
|
|
||
|
example : fib 8 = 34 :=
|
||
|
rfl
|