lean2/library/data/nat/sub.lean

514 lines
17 KiB
Text
Raw Normal View History

--- Copyright (c) 2014 Floris van Doorn. All rights reserved.
--- Released under Apache 2.0 license as described in the file LICENSE.
--- Author: Floris van Doorn
-- data.nat.sub
-- ============
--
-- Subtraction on the natural numbers, as well as min, max, and distance.
import data.nat.order
import tools.fake_simplifier
using nat eq_ops tactic
using helper_tactics
using fake_simplifier
namespace nat
-- subtraction
-- -----------
definition sub (n m : ) : nat := nat_rec n (fun m x, pred x) m
infixl `-` := sub
theorem sub_zero_right (n : ) : n - 0 = n
theorem sub_succ_right (n m : ) : n - succ m = pred (n - m)
opaque_hint (hiding sub)
theorem sub_zero_left (n : ) : 0 - n = 0 :=
induction_on n (sub_zero_right 0)
(take k : nat,
assume IH : 0 - k = 0,
calc
0 - succ k = pred (0 - k) : sub_succ_right 0 k
... = pred 0 : {IH}
... = 0 : pred_zero)
--(
--theorem sub_succ_left (n m : ) : pred (succ n - m) = n - m
-- :=
-- induction_on m
-- (calc
-- pred (succ n - 0) = pred (succ n) : {sub_zero_right (succ n)}
-- ... = n : pred_succ n
-- ... = n - 0 : symm (sub_zero_right n))
-- (take k : nat,
-- assume IH : pred (succ n - k) = n - k,
-- _)
--)
--succ_sub_succ
theorem sub_succ_succ (n m : ) : succ n - succ m = n - m :=
induction_on m
(calc
succ n - 1 = pred (succ n - 0) : sub_succ_right (succ n) 0
... = pred (succ n) : {sub_zero_right (succ n)}
... = n : pred_succ n
... = n - 0 : symm (sub_zero_right n))
(take k : nat,
assume IH : succ n - succ k = n - k,
calc
succ n - succ (succ k) = pred (succ n - succ k) : sub_succ_right (succ n) (succ k)
... = pred (n - k) : {IH}
... = n - succ k : symm (sub_succ_right n k))
theorem sub_self (n : ) : n - n = 0 :=
induction_on n (sub_zero_right 0) (take k IH, trans (sub_succ_succ k k) IH)
-- TODO: add_sub_add_right
theorem sub_add_add_right (n k m : ) : (n + k) - (m + k) = n - m :=
induction_on k
(calc
(n + 0) - (m + 0) = n - (m + 0) : {add_zero_right _}
... = n - m : {add_zero_right _})
(take l : nat,
assume IH : (n + l) - (m + l) = n - m,
calc
(n + succ l) - (m + succ l) = succ (n + l) - (m + succ l) : {add_succ_right _ _}
... = succ (n + l) - succ (m + l) : {add_succ_right _ _}
... = (n + l) - (m + l) : sub_succ_succ _ _
... = n - m : IH)
theorem sub_add_add_left (k n m : ) : (k + n) - (k + m) = n - m :=
add_comm m k ▸ add_comm n k ▸ sub_add_add_right n k m
-- TODO: add_sub_inv
theorem sub_add_left (n m : ) : n + m - m = n :=
induction_on m
((add_zero_right n)⁻¹ ▸ sub_zero_right n)
(take k : ,
assume IH : n + k - k = n,
calc
n + succ k - succ k = succ (n + k) - succ k : {add_succ_right n k}
... = n + k - k : sub_succ_succ _ _
... = n : IH)
-- TODO: add_sub_inv'
theorem sub_add_left2 (n m : ) : n + m - n = m :=
add_comm m n ▸ sub_add_left m n
theorem sub_sub (n m k : ) : n - m - k = n - (m + k) :=
induction_on k
(calc
n - m - 0 = n - m : sub_zero_right _
... = n - (m + 0) : {symm (add_zero_right m)})
(take l : nat,
assume IH : n - m - l = n - (m + l),
calc
n - m - succ l = pred (n - m - l) : sub_succ_right (n - m) l
... = pred (n - (m + l)) : {IH}
... = n - succ (m + l) : symm (sub_succ_right n (m + l))
... = n - (m + succ l) : {symm (add_succ_right m l)})
theorem succ_sub_sub (n m k : ) : succ n - m - succ k = n - m - k :=
calc
succ n - m - succ k = succ n - (m + succ k) : sub_sub _ _ _
... = succ n - succ (m + k) : {add_succ_right m k}
... = n - (m + k) : sub_succ_succ _ _
... = n - m - k : symm (sub_sub n m k)
theorem sub_add_right_eq_zero (n m : ) : n - (n + m) = 0 :=
calc
n - (n + m) = n - n - m : symm (sub_sub n n m)
... = 0 - m : {sub_self n}
... = 0 : sub_zero_left m
theorem sub_comm (m n k : ) : m - n - k = m - k - n :=
calc
m - n - k = m - (n + k) : sub_sub m n k
... = m - (k + n) : {add_comm n k}
... = m - k - n : symm (sub_sub m k n)
theorem sub_one (n : ) : n - 1 = pred n :=
calc
n - 1 = pred (n - 0) : sub_succ_right n 0
... = pred n : {sub_zero_right n}
theorem succ_sub_one (n : ) : succ n - 1 = n :=
trans (sub_succ_succ n 0) (sub_zero_right n)
-- add_rewrite sub_add_left
-- ### interaction with multiplication
theorem mul_pred_left (n m : ) : pred n * m = n * m - m :=
induction_on n
(calc
pred 0 * m = 0 * m : {pred_zero}
... = 0 : mul_zero_left _
... = 0 - m : symm (sub_zero_left m)
... = 0 * m - m : {symm (mul_zero_left m)})
(take k : nat,
assume IH : pred k * m = k * m - m,
calc
pred (succ k) * m = k * m : {pred_succ k}
... = k * m + m - m : symm (sub_add_left _ _)
... = succ k * m - m : {symm (mul_succ_left k m)})
theorem mul_pred_right (n m : ) : n * pred m = n * m - n :=
calc n * pred m = pred m * n : mul_comm _ _
... = m * n - n : mul_pred_left m n
... = n * m - n : {mul_comm m n}
theorem mul_sub_distr_right (n m k : ) : (n - m) * k = n * k - m * k :=
induction_on m
(calc
(n - 0) * k = n * k : {sub_zero_right n}
... = n * k - 0 : symm (sub_zero_right _)
... = n * k - 0 * k : {symm (mul_zero_left _)})
(take l : nat,
assume IH : (n - l) * k = n * k - l * k,
calc
(n - succ l) * k = pred (n - l) * k : {sub_succ_right n l}
... = (n - l) * k - k : mul_pred_left _ _
... = n * k - l * k - k : {IH}
... = n * k - (l * k + k) : sub_sub _ _ _
... = n * k - (succ l * k) : {symm (mul_succ_left l k)})
theorem mul_sub_distr_left (n m k : ) : n * (m - k) = n * m - n * k :=
calc
n * (m - k) = (m - k) * n : mul_comm _ _
... = m * n - k * n : mul_sub_distr_right _ _ _
... = n * m - k * n : {mul_comm _ _}
... = n * m - n * k : {mul_comm _ _}
-- ### interaction with inequalities
theorem succ_sub {m n : } : m ≥ n → succ m - n = succ (m - n) :=
sub_induction n m
(take k,
assume H : 0 ≤ k,
calc
succ k - 0 = succ k : sub_zero_right (succ k)
... = succ (k - 0) : {symm (sub_zero_right k)})
(take k,
assume H : succ k ≤ 0,
absurd_elim _ H (not_succ_zero_le k))
(take k l,
assume IH : k ≤ l → succ l - k = succ (l - k),
take H : succ k ≤ succ l,
calc
succ (succ l) - succ k = succ l - k : sub_succ_succ (succ l) k
... = succ (l - k) : IH (succ_le_cancel H)
... = succ (succ l - succ k) : {symm (sub_succ_succ l k)})
theorem le_imp_sub_eq_zero {n m : } (H : n ≤ m) : n - m = 0 :=
obtain (k : ) (Hk : n + k = m), from le_elim H, Hk ▸ sub_add_right_eq_zero n k
theorem add_sub_le {n m : } : n ≤ m → n + (m - n) = m :=
sub_induction n m
(take k,
assume H : 0 ≤ k,
calc
0 + (k - 0) = k - 0 : add_zero_left (k - 0)
... = k : sub_zero_right k)
(take k, assume H : succ k ≤ 0, absurd_elim _ H (not_succ_zero_le k))
(take k l,
assume IH : k ≤ l → k + (l - k) = l,
take H : succ k ≤ succ l,
calc
succ k + (succ l - succ k) = succ k + (l - k) : {sub_succ_succ l k}
... = succ (k + (l - k)) : add_succ_left k (l - k)
... = succ l : {IH (succ_le_cancel H)})
theorem add_sub_ge_left {n m : } : n ≥ m → n - m + m = n :=
add_comm m (n - m) ▸ add_sub_le
theorem add_sub_ge {n m : } (H : n ≥ m) : n + (m - n) = n :=
calc
n + (m - n) = n + 0 : {le_imp_sub_eq_zero H}
... = n : add_zero_right n
theorem add_sub_le_left {n m : } : n ≤ m → n - m + m = m :=
add_comm m (n - m) ▸ add_sub_ge
theorem le_add_sub_left (n m : ) : n ≤ n + (m - n) :=
or_elim (le_total n m)
(assume H : n ≤ m, (add_sub_le H)⁻¹ ▸ H)
(assume H : m ≤ n, (add_sub_ge H)⁻¹ ▸ le_refl n)
theorem le_add_sub_right (n m : ) : m ≤ n + (m - n) :=
or_elim (le_total n m)
(assume H : n ≤ m, subst (symm (add_sub_le H)) (le_refl m))
(assume H : m ≤ n, subst (symm (add_sub_ge H)) H)
theorem sub_split {P : → Prop} {n m : } (H1 : n ≤ m → P 0) (H2 : ∀k, m + k = n -> P k)
: P (n - m) :=
or_elim (le_total n m)
(assume H3 : n ≤ m, subst (symm (le_imp_sub_eq_zero H3)) (H1 H3))
(assume H3 : m ≤ n, H2 (n - m) (add_sub_le H3))
theorem sub_le_self (n m : ) : n - m ≤ n :=
sub_split
(assume H : n ≤ m, zero_le n)
(take k : , assume H : m + k = n, le_intro (subst (add_comm m k) H))
theorem le_elim_sub (n m : ) (H : n ≤ m) : ∃k, m - k = n :=
obtain (k : ) (Hk : n + k = m), from le_elim H,
exists_intro k
(calc
m - k = n + k - k : {symm Hk}
... = n : sub_add_left n k)
theorem add_sub_assoc {m k : } (H : k ≤ m) (n : ) : n + m - k = n + (m - k) :=
have l1 : k ≤ m → n + m - k = n + (m - k), from
sub_induction k m
(take m : ,
assume H : 0 ≤ m,
calc
n + m - 0 = n + m : sub_zero_right (n + m)
... = n + (m - 0) : {symm (sub_zero_right m)})
(take k : , assume H : succ k ≤ 0, absurd_elim _ H (not_succ_zero_le k))
(take k m,
assume IH : k ≤ m → n + m - k = n + (m - k),
take H : succ k ≤ succ m,
calc
n + succ m - succ k = succ (n + m) - succ k : {add_succ_right n m}
... = n + m - k : sub_succ_succ (n + m) k
... = n + (m - k) : IH (succ_le_cancel H)
... = n + (succ m - succ k) : {symm (sub_succ_succ m k)}),
l1 H
theorem sub_eq_zero_imp_le {n m : } : n - m = 0 → n ≤ m :=
sub_split
(assume H1 : n ≤ m, assume H2 : 0 = 0, H1)
(take k : ,
assume H1 : m + k = n,
assume H2 : k = 0,
have H3 : n = m, from subst (add_zero_right m) (subst H2 (symm H1)),
subst H3 (le_refl n))
theorem sub_sub_split {P : → Prop} {n m : } (H1 : ∀k, n = m + k -> P k 0)
(H2 : ∀k, m = n + k → P 0 k) : P (n - m) (m - n) :=
or_elim (le_total n m)
(assume H3 : n ≤ m,
le_imp_sub_eq_zero H3⁻¹ ▸ (H2 (m - n) (add_sub_le H3⁻¹)))
(assume H3 : m ≤ n,
le_imp_sub_eq_zero H3⁻¹ ▸ (H1 (n - m) (add_sub_le H3⁻¹)))
theorem sub_intro {n m k : } (H : n + m = k) : k - n = m :=
have H2 : k - n + n = m + n, from
calc
k - n + n = k : add_sub_ge_left (le_intro H)
... = n + m : symm H
... = m + n : add_comm n m,
add_cancel_right H2
theorem sub_lt {x y : } (xpos : x > 0) (ypos : y > 0) : x - y < x :=
obtain (x' : ) (xeq : x = succ x'), from pos_imp_eq_succ xpos,
obtain (y' : ) (yeq : y = succ y'), from pos_imp_eq_succ ypos,
have xsuby_eq : x - y = x' - y', from
calc
x - y = succ x' - y : {xeq}
... = succ x' - succ y' : {yeq}
... = x' - y' : sub_succ_succ _ _,
have H1 : x' - y' ≤ x', from sub_le_self _ _,
have H2 : x' < succ x', from self_lt_succ _,
show x - y < x, from xeq⁻¹ ▸ xsuby_eq⁻¹ ▸ le_lt_trans H1 H2
theorem sub_le_right {n m : } (H : n ≤ m) (k : nat) : n - k ≤ m - k :=
obtain (l : ) (Hl : n + l = m), from le_elim H,
or_elim (le_total n k)
(assume H2 : n ≤ k, (le_imp_sub_eq_zero H2)⁻¹ ▸ zero_le (m - k))
(assume H2 : k ≤ n,
have H3 : n - k + l = m - k, from
calc
n - k + l = l + (n - k) : by simp
... = l + n - k : symm (add_sub_assoc H2 l)
... = n + l - k : {add_comm l n}
... = m - k : {Hl},
le_intro H3)
theorem sub_le_left {n m : } (H : n ≤ m) (k : nat) : k - m ≤ k - n :=
obtain (l : ) (Hl : n + l = m), from le_elim H,
sub_split
(assume H2 : k ≤ m, zero_le (k - n))
(take m' : ,
assume Hm : m + m' = k,
have H3 : n ≤ k, from le_trans H (le_intro Hm),
have H4 : m' + l + n = k - n + n, from
calc
m' + l + n = n + l + m' : by simp
... = m + m' : {Hl}
... = k : Hm
... = k - n + n : symm (add_sub_ge_left H3),
le_intro (add_cancel_right H4))
-- theorem sub_lt_cancel_right {n m k : ) (H : n - k < m - k) : n < m
-- :=
-- _
-- theorem sub_lt_cancel_left {n m k : ) (H : n - m < n - k) : k < m
-- :=
-- _
theorem sub_triangle_inequality (n m k : ) : n - k ≤ (n - m) + (m - k) :=
sub_split
(assume H : n ≤ m, (add_zero_left (m - k))⁻¹ ▸ sub_le_right H k)
(take mn : ,
assume Hmn : m + mn = n,
sub_split
(assume H : m ≤ k,
have H2 : n - k ≤ n - m, from sub_le_left H n,
have H3 : n - k ≤ mn, from sub_intro Hmn ▸ H2,
show n - k ≤ mn + 0, from (add_zero_right mn)⁻¹ ▸ H3)
(take km : ,
assume Hkm : k + km = m,
have H : k + (mn + km) = n, from
calc
k + (mn + km) = k + km + mn : by simp
... = m + mn : {Hkm}
... = n : Hmn,
have H2 : n - k = mn + km, from sub_intro H,
H2 ▸ (le_refl (n - k))))
-- add_rewrite sub_self mul_sub_distr_left mul_sub_distr_right
-- Max, min, iteration, and absolute difference
-- --------------------------------------------
definition max (n m : ) : := n + (m - n)
definition min (n m : ) : := m - (m - n)
theorem max_le {n m : } (H : n ≤ m) : n + (m - n) = m := add_sub_le H
theorem max_ge {n m : } (H : n ≥ m) : n + (m - n) = n := add_sub_ge H
theorem left_le_max (n m : ) : n ≤ n + (m - n) := le_add_sub_left n m
theorem right_le_max (n m : ) : m ≤ max n m := le_add_sub_right n m
-- ### absolute difference
-- This section is still incomplete
definition dist (n m : ) := (n - m) + (m - n)
theorem dist_comm (n m : ) : dist n m = dist m n :=
add_comm (n - m) (m - n)
theorem dist_self (n : ) : dist n n = 0 :=
calc
(n - n) + (n - n) = 0 + 0 : by simp
... = 0 : by simp
theorem dist_eq_zero {n m : } (H : dist n m = 0) : n = m :=
have H2 : n - m = 0, from add_eq_zero_left H,
have H3 : n ≤ m, from sub_eq_zero_imp_le H2,
have H4 : m - n = 0, from add_eq_zero_right H,
have H5 : m ≤ n, from sub_eq_zero_imp_le H4,
le_antisym H3 H5
theorem dist_le {n m : } (H : n ≤ m) : dist n m = m - n :=
calc
dist n m = 0 + (m - n) : {le_imp_sub_eq_zero H}
... = m - n : add_zero_left (m - n)
theorem dist_ge {n m : } (H : n ≥ m) : dist n m = n - m :=
dist_comm m n ▸ dist_le H
theorem dist_zero_right (n : ) : dist n 0 = n :=
trans (dist_ge (zero_le n)) (sub_zero_right n)
theorem dist_zero_left (n : ) : dist 0 n = n :=
trans (dist_le (zero_le n)) (sub_zero_right n)
theorem dist_intro {n m k : } (H : n + m = k) : dist k n = m :=
calc
dist k n = k - n : dist_ge (le_intro H)
... = m : sub_intro H
theorem dist_add_right (n k m : ) : dist (n + k) (m + k) = dist n m :=
calc
dist (n + k) (m + k) = ((n+k) - (m+k)) + ((m+k)-(n+k)) : refl _
... = (n - m) + ((m + k) - (n + k)) : {sub_add_add_right _ _ _}
... = (n - m) + (m - n) : {sub_add_add_right _ _ _}
theorem dist_add_left (k n m : ) : dist (k + n) (k + m) = dist n m :=
add_comm m k ▸ add_comm n k ▸ dist_add_right n k m
-- add_rewrite dist_self dist_add_right dist_add_left dist_zero_left dist_zero_right
theorem dist_ge_add_right {n m : } (H : n ≥ m) : dist n m + m = n :=
calc
dist n m + m = n - m + m : {dist_ge H}
... = n : add_sub_ge_left H
theorem dist_eq_intro {n m k l : } (H : n + m = k + l) : dist n k = dist l m :=
calc
dist n k = dist (n + m) (k + m) : symm (dist_add_right n m k)
... = dist (k + l) (k + m) : {H}
... = dist l m : dist_add_left k l m
theorem dist_sub_move_add {n m : } (H : n ≥ m) (k : ) : dist (n - m) k = dist n (k + m) :=
have H2 : n - m + (k + m) = k + n, from
calc
n - m + (k + m) = n - m + m + k : by simp
... = n + k : {add_sub_ge_left H}
... = k + n : by simp,
dist_eq_intro H2
theorem dist_sub_move_add' {k m : } (H : k ≥ m) (n : ) : dist n (k - m) = dist (n + m) k :=
subst (subst (dist_sub_move_add H n) (dist_comm (k - m) n)) (dist_comm k (n + m))
--triangle inequality formulated with dist
theorem triangle_inequality (n m k : ) : dist n k ≤ dist n m + dist m k :=
have H : (n - m) + (m - k) + ((k - m) + (m - n)) = (n - m) + (m - n) + ((m - k) + (k - m)),
by simp,
H ▸ add_le (sub_triangle_inequality n m k) (sub_triangle_inequality k m n)
theorem dist_add_le_add_dist (n m k l : ) : dist (n + m) (k + l) ≤ dist n k + dist m l :=
have H : dist (n + m) (k + m) + dist (k + m) (k + l) = dist n k + dist m l, from
calc
_ = dist n k + dist (k + m) (k + l) : {dist_add_right n m k}
... = _ : {dist_add_left k m l},
H ▸ (triangle_inequality (n + m) (k + m) (k + l))
--interaction with multiplication
theorem dist_mul_left (k n m : ) : dist (k * n) (k * m) = k * dist n m :=
have H : ∀n m, dist n m = n - m + (m - n), from take n m, refl _,
by simp
theorem dist_mul_right (n k m : ) : dist (n * k) (m * k) = dist n m * k :=
have H : ∀n m, dist n m = n - m + (m - n), from take n m, refl _,
by simp
-- add_rewrite dist_mul_right dist_mul_left dist_comm
--needed to prove of_nat a * of_nat b = of_nat (a * b) in int
theorem dist_mul_dist (n m k l : ) : dist n m * dist k l = dist (n * k + m * l) (n * l + m * k) :=
have aux : ∀k l, k ≥ l → dist n m * dist k l = dist (n * k + m * l) (n * l + m * k), from
take k l : ,
assume H : k ≥ l,
have H2 : m * k ≥ m * l, from mul_le_left H m,
have H3 : n * l + m * k ≥ m * l, from le_trans H2 (le_add_left _ _),
calc
dist n m * dist k l = dist n m * (k - l) : {dist_ge H}
... = dist (n * (k - l)) (m * (k - l)) : symm (dist_mul_right n (k - l) m)
... = dist (n * k - n * l) (m * k - m * l) : by simp
... = dist (n * k) (m * k - m * l + n * l) : dist_sub_move_add (mul_le_left H n) _
... = dist (n * k) (n * l + (m * k - m * l)) : {add_comm _ _}
... = dist (n * k) (n * l + m * k - m * l) : {symm (add_sub_assoc H2 (n * l))}
... = dist (n * k + m * l) (n * l + m * k) : dist_sub_move_add' H3 _,
or_elim (le_total k l)
(assume H : k ≤ l, dist_comm l k ▸ dist_comm _ _ ▸ aux l k H)
(assume H : l ≤ k, aux k l H)
end nat