lean2/src/library/blast/recursor_action.cpp

356 lines
14 KiB
C++
Raw Normal View History

/*
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#include "kernel/instantiate.h"
#include "kernel/inductive/inductive.h"
#include "library/user_recursors.h"
#include "library/blast/revert.h"
#include "library/blast/blast.h"
2015-11-18 20:59:53 +00:00
#include "library/blast/trace.h"
namespace lean {
namespace blast {
static unsigned g_ext_id = 0;
struct recursor_branch_extension : public branch_extension {
hypothesis_priority_queue m_rec_queue;
recursor_branch_extension() {}
recursor_branch_extension(recursor_branch_extension const & b):m_rec_queue(b.m_rec_queue) {}
virtual ~recursor_branch_extension() {}
virtual branch_extension * clone() { return new recursor_branch_extension(*this); }
};
void initialize_recursor_action() {
g_ext_id = register_branch_extension(new recursor_branch_extension());
}
void finalize_recursor_action() {
}
static recursor_branch_extension & get_extension() {
return static_cast<recursor_branch_extension&>(curr_state().get_extension(g_ext_id));
}
optional<name> is_recursor_action_target(hypothesis_idx hidx) {
state & s = curr_state();
hypothesis const & h = s.get_hypothesis_decl(hidx);
expr const & type = h.get_type();
if (!is_app(type) && !is_constant(type))
return optional<name>();
if (is_relation_app(type))
return optional<name>(); // we don't apply recursors to equivalence relations: =, ~, <->, etc.
if (!h.is_assumption())
return optional<name>(); // we only consider assumptions
if (get_type_context().is_class(type)) {
// we don't eliminate type classes instances
// TODO(Leo): we may revise that in the future... some type classes instances may be worth eliminating (e.g., decidable).
return optional<name>();
}
// TODO(Leo): more restrictions?
// TODO(Leo): consider user-provided hints
expr const & I = get_app_fn(type);
if (!is_constant(I))
return optional<name>();
if (inductive::is_inductive_decl(env(), const_name(I)))
return optional<name>(name(inductive::get_elim_name(const_name(I)))); // it is builtin recursive datatype
list<name> Rs = get_recursors_for(env(), const_name(I));
if (!Rs)
return optional<name>();
else
return optional<name>(head(Rs)); // type has user-defined recursors
}
unsigned get_num_minor_premises(name const & R) {
return get_recursor_info(env(), R).get_num_minors();
}
bool is_recursive_recursor(name const & R) {
return get_recursor_info(env(), R).is_recursive();
}
struct recursor_proof_step_cell : public proof_step_cell {
bool m_dep;
branch m_branch; // branch for backtracking
expr m_proof; // recursor-application (the position where the goal-proofs are marked by the local constants).
list<expr> m_goals; // type of each subgoal/branch encoded as a local constant
list<expr> m_goal_proofs; // proofs generated so far
recursor_proof_step_cell(bool dep, branch const & b, expr const & pr, list<expr> const & goals, list<expr> const & goal_proofs):
m_dep(dep), m_branch(b), m_proof(pr), m_goals(goals), m_goal_proofs(goal_proofs) {
}
virtual ~recursor_proof_step_cell() {}
virtual action_result resolve(expr const & pr) const override {
state & s = curr_state();
s.set_branch(m_branch);
if (!m_dep) {
// It is not a dependent elimination, so if pr did not use new hypothesis,
// we don't need to investigate other branches.
// This is also a form of non-chronological backtracking.
expr const & goal = head(m_goals);
unsigned arity = get_arity(mlocal_type(goal));
expr it = pr;
bool skip = true;
for (unsigned i = 0; i < arity; i++) {
if (!is_lambda(it)) {
skip = false;
break;
}
it = binding_body(it);
if (!closed(it)) {
skip = false;
break;
}
}
if (skip) {
lean_assert(closed(it));
return action_result::solved(it);
}
}
list<expr> new_goals = tail(m_goals);
list<expr> new_prs = cons(pr, m_goal_proofs);
if (empty(new_goals)) {
buffer<expr> proof_args;
expr const & rec = get_app_args(m_proof, proof_args);
// update proof_args that are goals with their proofs
unsigned i = proof_args.size();
while (i > 0) {
--i;
if (is_fresh_local(proof_args[i])) {
lean_assert(new_prs);
proof_args[i] = head(new_prs);
new_prs = tail(new_prs);
}
}
expr result = mk_app(rec, proof_args);
return action_result::solved(result);
} else {
s.pop_proof_step();
s.push_proof_step(new recursor_proof_step_cell(m_dep, m_branch, m_proof, new_goals, new_prs));
s.set_target(mlocal_type(head(new_goals)));
return action_result::new_branch();
}
}
};
action_result recursor_action(hypothesis_idx hidx, name const & R) {
state & s = curr_state();
hypothesis const & h = s.get_hypothesis_decl(hidx);
expr const & type = h.get_type();
lean_assert(is_constant(get_app_fn(type)));
recursor_info rec_info = get_recursor_info(env(), R);
if (!rec_info.has_dep_elim() && s.target_depends_on(hidx)) {
// recursor does does not support dependent elimination, but conclusion
// depends on major premise
return action_result::failed();
}
buffer<expr> type_args;
get_app_args(type, type_args);
buffer<optional<expr>> params;
for (optional<unsigned> const & pos : rec_info.get_params_pos()) {
if (!pos) {
params.push_back(none_expr());
} else if (*pos >= type_args.size()) {
return action_result::failed(); // major premise type is ill-formed
} else {
params.push_back(some_expr(type_args[*pos]));
}
}
buffer<expr> indices;
list<unsigned> const & idx_pos = rec_info.get_indices_pos();
for (unsigned pos : idx_pos) {
if (pos >= type_args.size()) {
return action_result::failed(); // major premise type is ill-formed");
}
expr const & idx = type_args[pos];
if (!is_href(idx)) {
return action_result::failed(); // argument of major premise type is not a href
}
for (unsigned i = 0; i < type_args.size(); i++) {
if (i != pos && is_local(type_args[i]) && mlocal_name(type_args[i]) == mlocal_name(idx)) {
return action_result::failed(); // argument of major premise is an index, but it occurs more than once
}
if (i > pos && // occurs after idx
std::find(idx_pos.begin(), idx_pos.end(), i) != idx_pos.end() && // it is also an index
is_href(type_args[i]) && // if it is not an index, it will fail anyway.
s.hidx_depends_on(href_index(idx), href_index(type_args[i]))) {
// argument of major premise type is an index, but its type depends on another index
return action_result::failed();
}
}
indices.push_back(idx);
}
scope_curr_state save_state;
hypothesis_idx_buffer_set to_revert;
s.collect_direct_forward_deps(hidx, to_revert);
for (auto i : indices)
s.collect_direct_forward_deps(href_index(i), to_revert);
revert(to_revert);
expr target = s.get_target();
auto target_level = get_type_context().get_level_core(target);
if (!target_level) return action_result::failed(); // failed to extract universe level of target
buffer<level> rec_lvls;
expr const & I = get_app_fn(type);
buffer<level> I_lvls;
to_buffer(const_levels(I), I_lvls);
bool found_target_lvl = false;
for (unsigned idx : rec_info.get_universe_pos()) {
if (idx == recursor_info::get_motive_univ_idx()) {
rec_lvls.push_back(*target_level);
found_target_lvl = true;
} else {
if (idx >= I_lvls.size())
return action_result::failed(); // ill-formed recursor
rec_lvls.push_back(I_lvls[idx]);
}
}
if (!found_target_lvl && !is_zero(*target_level)) {
// recursor can only eliminate into Prop
return action_result::failed();
}
expr rec = mk_constant(rec_info.get_name(), to_list(rec_lvls));
for (optional<expr> const & p : params) {
if (p) {
rec = mk_app(rec, *p);
} else {
// try type class resolution to synthesize argument
expr rec_type = relaxed_whnf(infer_type(rec));
if (!is_pi(rec_type))
return action_result::failed(); // ill-formed recursor
expr arg_type = binding_domain(rec_type);
if (auto inst = mk_class_instance(arg_type)) {
rec = mk_app(rec, *inst);
} else {
return action_result::failed(); // failed to generate instance
}
}
}
expr motive = target;
if (rec_info.has_dep_elim())
motive = s.mk_lambda(h.get_self(), motive);
motive = s.mk_lambda(indices, motive);
rec = mk_app(rec, motive);
expr rec_type = relaxed_whnf(infer_type(rec));
unsigned curr_pos = params.size() + 1 /* motive */;
unsigned first_idx_pos = rec_info.get_first_index_pos();
bool consumed_major = false;
buffer<expr> new_goals;
while (is_pi(rec_type) && curr_pos < rec_info.get_num_args()) {
if (first_idx_pos == curr_pos) {
for (expr const & idx : indices) {
rec = mk_app(rec, idx);
rec_type = relaxed_whnf(instantiate(binding_body(rec_type), idx));
if (!is_pi(rec_type))
return action_result::failed(); // ill-formed type
curr_pos++;
}
rec = mk_app(rec, h.get_self());
rec_type = relaxed_whnf(instantiate(binding_body(rec_type), h.get_self()));
consumed_major = true;
curr_pos++;
} else {
expr new_type = binding_domain(rec_type);
expr rec_arg;
if (binding_info(rec_type).is_inst_implicit()) {
auto inst = mk_class_instance(new_type);
if (!inst) return action_result::failed(); // type class resolution failed
rec_arg = *inst;
} else {
rec_arg = mk_fresh_local(new_type); // placeholder
new_goals.push_back(rec_arg);
}
rec = mk_app(rec, rec_arg);
rec_type = relaxed_whnf(instantiate(binding_body(rec_type), rec_arg));
curr_pos++;
}
}
if (curr_pos != rec_info.get_num_args() || !consumed_major)
return action_result::failed(); // ill-formed recursor
save_state.commit();
2015-11-18 20:59:53 +00:00
trace_action("recursor");
if (new_goals.empty()) {
return action_result::solved(rec);
2015-11-18 20:59:53 +00:00
}
s.del_hypothesis(hidx);
s.push_proof_step(new recursor_proof_step_cell(rec_info.has_dep_elim(), s.get_branch(), rec, to_list(new_goals), list<expr>()));
s.set_target(mlocal_type(new_goals[0]));
return action_result::new_branch();
}
action_result recursor_action(hypothesis_idx hidx) {
state & s = curr_state();
hypothesis const & h = s.get_hypothesis_decl(hidx);
expr const & type = h.get_type();
expr const & I = get_app_fn(type);
if (!is_constant(I))
return action_result::failed();
list<name> Rs = get_recursors_for(env(), const_name(I));
for (auto R : Rs) {
auto r = recursor_action(hidx, R);
if (!failed(r))
return r;
}
return action_result::failed();
}
action_result recursor_preprocess_action(hypothesis_idx hidx) {
if (optional<name> R = is_recursor_action_target(hidx)) {
unsigned num_minor = get_num_minor_premises(*R);
if (num_minor == 1) {
action_result r = recursor_action(hidx, *R);
if (!failed(r)) {
// if (!preprocess) display_action("recursor");
return r;
}
} else {
// If the hypothesis recursor has more than 1 minor premise, we
// put it in a priority queue.
// TODO(Leo): refine
// TODO(Leo): the following weight computation is too simple...
double w = 1.0 / (static_cast<double>(hidx) + 1.0);
if (!is_recursive_recursor(*R)) {
// TODO(Leo): we need a better strategy for handling recursive recursors...
w += static_cast<double>(num_minor);
recursor_branch_extension & ext = get_extension();
ext.m_rec_queue.insert(w, hidx);
return action_result::new_branch();
}
}
}
return action_result::failed();
}
action_result recursor_action() {
recursor_branch_extension & ext = get_extension();
while (true) {
if (ext.m_rec_queue.empty())
return action_result::failed();
unsigned hidx = ext.m_rec_queue.erase_min();
hypothesis const & h_decl = curr_state().get_hypothesis_decl(hidx);
if (h_decl.is_dead())
continue;
if (optional<name> R = is_recursor_action_target(hidx)) {
Try(recursor_action(hidx, *R));
}
}
}
}}