2014-11-05 20:54:03 +00:00
|
|
|
import logic
|
|
|
|
|
|
|
|
infixl `*` := has_mul.mul
|
|
|
|
postfix `⁻¹` := has_inv.inv
|
|
|
|
notation 1 := has_one.one
|
|
|
|
|
|
|
|
structure semigroup [class] (A : Type) extends has_mul A :=
|
|
|
|
(assoc : ∀ a b c, mul (mul a b) c = mul a (mul b c))
|
|
|
|
|
|
|
|
structure comm_semigroup [class] (A : Type) extends semigroup A renaming mul→add:=
|
|
|
|
(comm : ∀a b, add a b = add b a)
|
|
|
|
|
|
|
|
infixl `+` := comm_semigroup.add
|
|
|
|
|
|
|
|
structure monoid [class] (A : Type) extends semigroup A, has_one A :=
|
|
|
|
(right_id : ∀a, mul a one = a) (left_id : ∀a, mul one a = a)
|
|
|
|
|
|
|
|
-- We can suppress := and :: when we are not declaring any new field.
|
|
|
|
structure comm_monoid [class] (A : Type) extends monoid A renaming mul→add, comm_semigroup A
|
|
|
|
|
2014-11-05 22:06:54 +00:00
|
|
|
print fields comm_monoid
|
|
|
|
|
2014-11-05 20:54:03 +00:00
|
|
|
structure group [class] (A : Type) extends monoid A, has_inv A :=
|
|
|
|
(is_inv : ∀ a, mul a (inv a) = one)
|
|
|
|
|
|
|
|
structure abelian_group [class] (A : Type) extends group A renaming mul→add, comm_monoid A
|
|
|
|
|
|
|
|
structure ring [class] (A : Type)
|
|
|
|
extends abelian_group A renaming
|
|
|
|
assoc→add.assoc
|
|
|
|
comm→add.comm
|
|
|
|
one→zero
|
2014-12-24 02:14:19 +00:00
|
|
|
right_id→add_zero
|
2014-11-05 20:54:03 +00:00
|
|
|
left_id→add.left_id
|
|
|
|
inv→uminus
|
|
|
|
is_inv→uminus_is_inv,
|
|
|
|
monoid A renaming
|
|
|
|
assoc→mul.assoc
|
|
|
|
right_id→mul.right_id
|
|
|
|
left_id→mul.left_id
|
|
|
|
:=
|
|
|
|
(dist_left : ∀ a b c, mul a (add b c) = add (mul a b) (mul a c))
|
|
|
|
(dist_right : ∀ a b c, mul (add a b) c = add (mul a c) (mul b c))
|
|
|
|
|
2014-11-05 22:06:54 +00:00
|
|
|
print fields ring
|
|
|
|
|
2014-11-05 20:54:03 +00:00
|
|
|
variable A : Type₁
|
|
|
|
variables a b c d : A
|
|
|
|
variable R : ring A
|
|
|
|
|
|
|
|
check a + b * c
|
|
|
|
|
|
|
|
set_option pp.implicit true
|
|
|
|
set_option pp.notation false
|
|
|
|
set_option pp.coercions true
|
|
|
|
|
|
|
|
check a + b * c
|