160 lines
6 KiB
Text
160 lines
6 KiB
Text
|
/-
|
|||
|
Copyright (c) 2015 Floris van Doorn. All rights reserved.
|
|||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|||
|
Author: Floris van Doorn
|
|||
|
|
|||
|
Theorems about sums/coproducts/disjoint unions
|
|||
|
-/
|
|||
|
|
|||
|
open lift eq is_equiv equiv equiv.ops prod prod.ops is_trunc sigma bool
|
|||
|
|
|||
|
namespace sum
|
|||
|
universe variables u v
|
|||
|
variables {A : Type.{u}} {B : Type.{v}} (z z' : A + B)
|
|||
|
|
|||
|
protected definition eta : sum.rec inl inr z = z :=
|
|||
|
by induction z; all_goals reflexivity
|
|||
|
|
|||
|
protected definition code [unfold 3 4] : A + B → A + B → Type.{max u v}
|
|||
|
| code (inl a) (inl a') := lift.{u v} (a = a')
|
|||
|
| code (inr b) (inr b') := lift.{v u} (b = b')
|
|||
|
| code _ _ := lift empty
|
|||
|
|
|||
|
protected definition decode [unfold 3 4] : Π(z z' : A + B), sum.code z z' → z = z'
|
|||
|
| decode (inl a) (inl a') := λc, ap inl (down c)
|
|||
|
| decode (inl a) (inr b') := λc, empty.elim (down c) _
|
|||
|
| decode (inr b) (inl a') := λc, empty.elim (down c) _
|
|||
|
| decode (inr b) (inr b') := λc, ap inr (down c)
|
|||
|
|
|||
|
variables {z z'}
|
|||
|
protected definition encode [unfold 3 4 5] (p : z = z') : sum.code z z' :=
|
|||
|
by induction p; induction z; all_goals exact up idp
|
|||
|
|
|||
|
variables (z z')
|
|||
|
definition sum_eq_equiv : (z = z') ≃ sum.code z z' :=
|
|||
|
equiv.MK sum.encode
|
|||
|
!sum.decode
|
|||
|
abstract begin
|
|||
|
intro c, induction z with a b, all_goals induction z' with a' b',
|
|||
|
all_goals (esimp at *; induction c with c),
|
|||
|
all_goals induction c, -- c either has type empty or a path
|
|||
|
all_goals reflexivity
|
|||
|
end end
|
|||
|
abstract begin
|
|||
|
intro p, induction p, induction z, all_goals reflexivity
|
|||
|
end end
|
|||
|
|
|||
|
section
|
|||
|
variables {a a' : A} {b b' : B}
|
|||
|
definition eq_of_inl_eq_inl [unfold 5] (p : inl a = inl a' :> A + B) : a = a' :=
|
|||
|
down (sum.encode p)
|
|||
|
definition eq_of_inr_eq_inr [unfold 5] (p : inr b = inr b' :> A + B) : b = b' :=
|
|||
|
down (sum.encode p)
|
|||
|
definition empty_of_inl_eq_inr (p : inl a = inr b) : empty := down (sum.encode p)
|
|||
|
definition empty_of_inr_eq_inl (p : inr b = inl a) : empty := down (sum.encode p)
|
|||
|
|
|||
|
definition sum_transport {P Q : A → Type} (p : a = a') (z : P a + Q a)
|
|||
|
: p ▸ z = sum.rec (λa, inl (p ▸ a)) (λb, inr (p ▸ b)) z :=
|
|||
|
by induction p; induction z; all_goals reflexivity
|
|||
|
end
|
|||
|
|
|||
|
variables {A' B' : Type} (f : A → A') (g : B → B')
|
|||
|
definition sum_functor [unfold 7] : A + B → A' + B'
|
|||
|
| sum_functor (inl a) := inl (f a)
|
|||
|
| sum_functor (inr b) := inr (g b)
|
|||
|
|
|||
|
definition is_equiv_sum_functor [Hf : is_equiv f] [Hg : is_equiv g] : is_equiv (sum_functor f g) :=
|
|||
|
adjointify (sum_functor f g)
|
|||
|
(sum_functor f⁻¹ g⁻¹)
|
|||
|
abstract begin
|
|||
|
intro z, induction z,
|
|||
|
all_goals (esimp; (apply ap inl | apply ap inr); apply right_inv)
|
|||
|
end end
|
|||
|
abstract begin
|
|||
|
intro z, induction z,
|
|||
|
all_goals (esimp; (apply ap inl | apply ap inr); apply right_inv)
|
|||
|
end end
|
|||
|
|
|||
|
definition sum_equiv_sum_of_is_equiv [Hf : is_equiv f] [Hg : is_equiv g] : A + B ≃ A' + B' :=
|
|||
|
equiv.mk _ (is_equiv_sum_functor f g)
|
|||
|
|
|||
|
definition sum_equiv_sum (f : A ≃ A') (g : B ≃ B') : A + B ≃ A' + B' :=
|
|||
|
equiv.mk _ (is_equiv_sum_functor f g)
|
|||
|
|
|||
|
definition sum_equiv_sum_left (g : B ≃ B') : A + B ≃ A + B' :=
|
|||
|
sum_equiv_sum equiv.refl g
|
|||
|
|
|||
|
definition sum_equiv_sum_right (f : A ≃ A') : A + B ≃ A' + B :=
|
|||
|
sum_equiv_sum f equiv.refl
|
|||
|
|
|||
|
definition flip : A + B → B + A
|
|||
|
| flip (inl a) := inr a
|
|||
|
| flip (inr b) := inl b
|
|||
|
|
|||
|
definition sum_comm_equiv (A B : Type) : A + B ≃ B + A :=
|
|||
|
begin
|
|||
|
fapply equiv.MK,
|
|||
|
exact flip,
|
|||
|
exact flip,
|
|||
|
all_goals (intro z; induction z; all_goals reflexivity)
|
|||
|
end
|
|||
|
|
|||
|
-- definition sum_assoc_equiv (A B C : Type) : A + (B + C) ≃ (A + B) + C :=
|
|||
|
-- begin
|
|||
|
-- fapply equiv.MK,
|
|||
|
-- all_goals try (intro z; induction z with u v;
|
|||
|
-- all_goals try induction u; all_goals try induction v),
|
|||
|
-- all_goals try (repeat (apply inl | apply inr | assumption); now),
|
|||
|
-- end
|
|||
|
|
|||
|
definition sum_empty_equiv (A : Type) : A + empty ≃ A :=
|
|||
|
begin
|
|||
|
fapply equiv.MK,
|
|||
|
intro z, induction z, assumption, contradiction,
|
|||
|
exact inl,
|
|||
|
intro a, reflexivity,
|
|||
|
intro z, induction z, reflexivity, contradiction
|
|||
|
end
|
|||
|
|
|||
|
definition sum_rec_unc {P : A + B → Type} (fg : (Πa, P (inl a)) × (Πb, P (inr b))) : Πz, P z :=
|
|||
|
sum.rec fg.1 fg.2
|
|||
|
|
|||
|
definition is_equiv_sum_rec (P : A + B → Type)
|
|||
|
: is_equiv (sum_rec_unc : (Πa, P (inl a)) × (Πb, P (inr b)) → Πz, P z) :=
|
|||
|
begin
|
|||
|
apply adjointify sum_rec_unc (λf, (λa, f (inl a), λb, f (inr b))),
|
|||
|
intro f, apply eq_of_homotopy, intro z, focus (induction z; all_goals reflexivity),
|
|||
|
intro h, induction h with f g, reflexivity
|
|||
|
end
|
|||
|
|
|||
|
definition equiv_sum_rec (P : A + B → Type) : (Πa, P (inl a)) × (Πb, P (inr b)) ≃ Πz, P z :=
|
|||
|
equiv.mk _ !is_equiv_sum_rec
|
|||
|
|
|||
|
definition imp_prod_imp_equiv_sum_imp (A B C : Type) : (A → C) × (B → C) ≃ (A + B → C) :=
|
|||
|
!equiv_sum_rec
|
|||
|
|
|||
|
definition is_trunc_sum (n : trunc_index) [HA : is_trunc (n.+2) A] [HB : is_trunc (n.+2) B]
|
|||
|
: is_trunc (n.+2) (A + B) :=
|
|||
|
begin
|
|||
|
apply is_trunc_succ_intro, intro z z',
|
|||
|
apply is_trunc_equiv_closed_rev, apply sum_eq_equiv,
|
|||
|
induction z with a b, all_goals induction z' with a' b', all_goals esimp,
|
|||
|
all_goals exact _,
|
|||
|
end
|
|||
|
|
|||
|
/- Sums are equivalent to dependent sigmas where the first component is a bool. -/
|
|||
|
|
|||
|
definition sum_of_sigma_bool {A B : Type} (v : Σ(b : bool), bool.rec A B b) : A + B :=
|
|||
|
by induction v with b x; induction b; exact inl x; exact inr x
|
|||
|
|
|||
|
definition sigma_bool_of_sum {A B : Type} (z : A + B) : Σ(b : bool), bool.rec A B b :=
|
|||
|
by induction z with a b; exact ⟨ff, a⟩; exact ⟨tt, b⟩
|
|||
|
|
|||
|
definition sum_equiv_sigma_bool (A B : Type) : A + B ≃ Σ(b : bool), bool.rec A B b :=
|
|||
|
equiv.MK sigma_bool_of_sum
|
|||
|
sum_of_sigma_bool
|
|||
|
begin intro v, induction v with b x, induction b, all_goals reflexivity end
|
|||
|
begin intro z, induction z with a b, all_goals reflexivity end
|
|||
|
|
|||
|
end sum
|