2014-09-05 16:44:33 +00:00
|
|
|
-- Copyright (c) 2014 Floris van Doorn. All rights reserved.
|
|
|
|
-- Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
-- Author: Floris van Doorn
|
|
|
|
|
|
|
|
-- category
|
|
|
|
import logic.core.eq logic.core.connectives
|
|
|
|
import data.unit data.sigma data.prod
|
|
|
|
import struc.function
|
|
|
|
|
2014-09-07 23:59:53 +00:00
|
|
|
inductive category [class] (ob : Type) (mor : ob → ob → Type) : Type :=
|
2014-09-05 16:44:33 +00:00
|
|
|
mk : Π (comp : Π⦃A B C : ob⦄, mor B C → mor A B → mor A C)
|
|
|
|
(id : Π {A : ob}, mor A A),
|
|
|
|
(Π {A B C D : ob} {f : mor A B} {g : mor B C} {h : mor C D},
|
|
|
|
comp h (comp g f) = comp (comp h g) f) →
|
|
|
|
(Π {A B : ob} {f : mor A B}, comp f id = f) →
|
|
|
|
(Π {A B : ob} {f : mor A B}, comp id f = f) →
|
|
|
|
category ob mor
|
|
|
|
|
|
|
|
namespace category
|
|
|
|
precedence `∘` : 60
|
|
|
|
|
|
|
|
section
|
|
|
|
parameters {ob : Type} {mor : ob → ob → Type} {Cat : category ob mor}
|
|
|
|
abbreviation compose := rec (λ comp id assoc idr idl, comp) Cat
|
|
|
|
abbreviation id := rec (λ comp id assoc idr idl, id) Cat
|
|
|
|
abbreviation ID (A : ob) := @id A
|
|
|
|
end
|
|
|
|
|
|
|
|
infixr `∘` := compose
|
|
|
|
|
|
|
|
section
|
|
|
|
parameters {ob : Type} {mor : ob → ob → Type} {Cat : category ob mor}
|
|
|
|
|
|
|
|
theorem assoc : Π {A B C D : ob} {f : mor A B} {g : mor B C} {h : mor C D},
|
|
|
|
h ∘ (g ∘ f) = (h ∘ g) ∘ f :=
|
|
|
|
rec (λ comp id assoc idr idl, assoc) Cat
|
|
|
|
|
|
|
|
theorem id_right : Π {A B : ob} {f : mor A B}, f ∘ id = f :=
|
|
|
|
rec (λ comp id assoc idr idl, idr) Cat
|
|
|
|
theorem id_left : Π {A B : ob} {f : mor A B}, id ∘ f = f :=
|
|
|
|
rec (λ comp id assoc idr idl, idl) Cat
|
|
|
|
|
|
|
|
theorem left_id_unique {A : ob} (i : mor A A) (H : Π{B} {f : mor B A}, i ∘ f = f) : i = id :=
|
|
|
|
calc
|
|
|
|
i = i ∘ id : eq.symm id_right
|
|
|
|
... = id : H
|
|
|
|
|
|
|
|
theorem right_id_unique {A : ob} (i : mor A A) (H : Π{B} {f : mor A B}, f ∘ i = f) : i = id :=
|
|
|
|
calc
|
|
|
|
i = id ∘ i : eq.symm id_left
|
|
|
|
... = id : H
|
|
|
|
|
|
|
|
definition has_left_inverse {A B : ob} (f : mor A B) : Type :=
|
|
|
|
including Cat, Σ g, g ∘ f = id
|
|
|
|
|
|
|
|
definition left_inverse {A B : ob} (f : mor A B) (H : has_left_inverse f) : mor B A :=
|
|
|
|
sigma.dpr1 H
|
|
|
|
|
|
|
|
definition has_right_inverse {A B : ob} (f : mor A B) : Type :=
|
|
|
|
including Cat, Σ g, f ∘ g = id
|
|
|
|
|
|
|
|
definition right_inverse {A B : ob} (f : mor A B) (H : has_right_inverse f) : mor B A :=
|
|
|
|
sigma.dpr1 H
|
|
|
|
|
|
|
|
definition iso {A B : ob} (f : mor A B) : Type :=
|
|
|
|
including Cat, Σ g, f ∘ g = id ∧ g ∘ f = id
|
|
|
|
|
|
|
|
definition inverse {A B : ob} (f : mor A B) (H : iso f) : mor B A :=
|
|
|
|
sigma.dpr1 H
|
|
|
|
|
|
|
|
theorem iso_imp_left_inverse {A B : ob} (f : mor A B) (H : iso f) : has_left_inverse f :=
|
|
|
|
sorry
|
|
|
|
|
|
|
|
theorem iso_imp_right_inverse {A B : ob} (f : mor A B) (H : iso f) : has_left_inverse f :=
|
|
|
|
sorry
|
|
|
|
|
|
|
|
theorem left_right_inverse_imp_iso {A B : ob} (f : mor A B)
|
|
|
|
(Hl : has_left_inverse f) (Hr : has_right_inverse f) : iso f :=
|
|
|
|
sorry
|
|
|
|
|
|
|
|
postfix `⁻¹` := inverse
|
|
|
|
|
|
|
|
set_option pp.implicit true
|
|
|
|
|
|
|
|
-- theorem foo {A B : ob} {f : mor A B} (H : iso f) : true :=
|
|
|
|
-- including Cat, (λx (y : iso f),x) _ H
|
|
|
|
|
|
|
|
theorem compose_inverse {A B : ob} {f : mor A B} (H : iso f) : f ∘ f⁻¹ H = id :=
|
|
|
|
and.elim_left (sigma.dpr2 H)
|
|
|
|
|
|
|
|
theorem inverse_compose {A B : ob} {f : mor A B} (H : iso f) : f⁻¹ H ∘ f = id :=
|
|
|
|
and.elim_right (sigma.dpr2 H)
|
|
|
|
|
|
|
|
theorem inverse_unique {A B : ob} {f : mor A B} (H H' : iso f) : f⁻¹ H = f⁻¹ H' :=
|
|
|
|
sorry
|
|
|
|
-- calc
|
|
|
|
-- inverse f H = f⁻¹ H ∘ id : symm id.right
|
|
|
|
-- ... = f⁻¹ H ∘ f ∘ f⁻¹ H' : {symm (compose_inverse H')}
|
|
|
|
-- ... = (f⁻¹ H ∘ f) ∘ f⁻¹ H' : assoc
|
|
|
|
-- ... = id ∘ f⁻¹ H' : {inverse_compose H}
|
|
|
|
-- ... = f⁻¹ H' : id.left
|
|
|
|
|
|
|
|
definition mono {A B : ob} (f : mor A B) : Prop :=
|
|
|
|
including Cat, ∀⦃C⦄ {g h : mor C A}, f ∘ g = f ∘ h → g = h
|
|
|
|
|
|
|
|
definition epi {A B : ob} (f : mor A B) : Prop :=
|
|
|
|
including Cat, ∀⦃C⦄ {g h : mor B C}, g ∘ f = h ∘ f → g = h
|
|
|
|
end
|
|
|
|
|
|
|
|
postfix `⁻¹` := inverse
|
|
|
|
|
|
|
|
section
|
|
|
|
parameters {obC obD : Type} {morC : obC → obC → Type} {morD : obD → obD → Type}
|
|
|
|
parameters (C : category obC morC)
|
|
|
|
parameters (D : category obD morD)
|
|
|
|
|
|
|
|
definition tst (a b c : obC) (m1 : morC a b) (m2 : morC b c) :=
|
|
|
|
(λx y, x) (compose m2 m1) (including C, false)
|
|
|
|
|
|
|
|
definition tst2 (C : category obC morC) (a b c : obC) (m1 : morC a b) (m2 : morC b c) :=
|
|
|
|
compose m2 m1
|
|
|
|
|
|
|
|
parameter a : obC
|
|
|
|
parameter f : morC a a
|
|
|
|
|
|
|
|
-- inductive foo : Type :=
|
|
|
|
-- mk : including C, foo
|
|
|
|
|
|
|
|
-- inductive functor : Type :=
|
|
|
|
-- functor.mk : including C D,
|
|
|
|
-- Π (obF : obC → obD) (morF : Π{A B}, morC A B → morD (obF A) (obF B)),
|
|
|
|
-- (Π {A : obC}, morF (ID A) = ID (obF A)) →
|
|
|
|
-- (Π {A B C : obC} {f : morC A B} {g : morC B C}, morF (g ∘ f) = morF g ∘ morF f) →
|
|
|
|
-- functor
|
|
|
|
end
|
|
|
|
|
|
|
|
section
|
|
|
|
open unit
|
|
|
|
definition one [instance] : category unit (λa b, unit) :=
|
|
|
|
category.mk (λ a b c f g, star) (λ a, star) (λ a b c d f g h, unit.equal _ _)
|
|
|
|
(λ a b f, unit.equal _ _) (λ a b f, unit.equal _ _)
|
|
|
|
end
|
|
|
|
|
|
|
|
section
|
|
|
|
--need extensionality
|
|
|
|
definition type_cat : category Type (λA B, A → B) :=
|
|
|
|
mk (λ a b c f g, function.compose f g) (λ a, function.id) (λ a b c d f g h, sorry)
|
|
|
|
(λ a b f, sorry) (λ a b f, sorry)
|
|
|
|
end
|
|
|
|
end category
|