lean2/library/data/rat/order.lean

354 lines
13 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad
Adds the ordering, and instantiates the rationals as an ordered field.
-/
import data.int algebra.ordered_field .basic
open quot eq.ops
/- the ordering on representations -/
namespace prerat
section int_notation
open int
variables {a b : prerat}
definition pos (a : prerat) : Prop := num a > 0
definition nonneg (a : prerat) : Prop := num a ≥ 0
theorem pos_of_int (a : ) : pos (of_int a) ↔ (#int a > 0) :=
!iff.rfl
theorem nonneg_of_int (a : ) : nonneg (of_int a) ↔ (#int a ≥ 0) :=
!iff.rfl
theorem pos_eq_pos_of_equiv {a b : prerat} (H1 : a ≡ b) : pos a = pos b :=
propext (iff.intro (num_pos_of_equiv H1) (num_pos_of_equiv H1⁻¹))
theorem nonneg_eq_nonneg_of_equiv (H : a ≡ b) : nonneg a = nonneg b :=
have H1 : (0 = num a) = (0 = num b),
from propext (iff.intro
(assume H2, eq.symm (num_eq_zero_of_equiv H H2⁻¹))
(assume H2, eq.symm (num_eq_zero_of_equiv H⁻¹ H2⁻¹))),
calc
nonneg a = (pos a 0 = num a) : propext !le_iff_lt_or_eq
... = (pos b 0 = num a) : pos_eq_pos_of_equiv H
... = (pos b 0 = num b) : H1
... = nonneg b : propext !le_iff_lt_or_eq
theorem nonneg_zero : nonneg zero := le.refl 0
theorem nonneg_add (H1 : nonneg a) (H2 : nonneg b) : nonneg (add a b) :=
show num a * denom b + num b * denom a ≥ 0,
from add_nonneg
(mul_nonneg H1 (le_of_lt (denom_pos b)))
(mul_nonneg H2 (le_of_lt (denom_pos a)))
theorem nonneg_antisymm (H1 : nonneg a) (H2 : nonneg (neg a)) : a ≡ zero :=
have H3 : num a = 0, from le.antisymm (nonpos_of_neg_nonneg H2) H1,
equiv_zero_of_num_eq_zero H3
theorem nonneg_total (a : prerat) : nonneg a nonneg (neg a) :=
or.elim (le.total 0 (num a))
(assume H : 0 ≤ num a, or.inl H)
(assume H : 0 ≥ num a, or.inr (neg_nonneg_of_nonpos H))
theorem nonneg_of_pos (H : pos a) : nonneg a := le_of_lt H
theorem ne_zero_of_pos (H : pos a) : ¬ a ≡ zero :=
assume H', ne_of_gt H (num_eq_zero_of_equiv_zero H')
theorem pos_of_nonneg_of_ne_zero (H1 : nonneg a) (H2 : ¬ a ≡ zero) : pos a :=
have H3 : num a ≠ 0,
from assume H' : num a = 0, H2 (equiv_zero_of_num_eq_zero H'),
lt_of_le_of_ne H1 (ne.symm H3)
theorem nonneg_mul (H1 : nonneg a) (H2 : nonneg b) : nonneg (mul a b) :=
mul_nonneg H1 H2
theorem pos_mul (H1 : pos a) (H2 : pos b) : pos (mul a b) :=
mul_pos H1 H2
end int_notation
end prerat
local attribute prerat.setoid [instance]
/- The ordering on the rationals.
The definitions of pos and nonneg are kept private, because they are only meant for internal
use. Users should use a > 0 and a ≥ 0 instead of pos and nonneg.
-/
namespace rat
variables {a b c : }
/- transfer properties of pos and nonneg -/
private definition pos (a : ) : Prop :=
quot.lift prerat.pos @prerat.pos_eq_pos_of_equiv a
private definition nonneg (a : ) : Prop :=
quot.lift prerat.nonneg @prerat.nonneg_eq_nonneg_of_equiv a
private theorem pos_of_int (a : ) : (#int a > 0) ↔ pos (of_int a) :=
prerat.pos_of_int a
private theorem nonneg_of_int (a : ) : (#int a ≥ 0) ↔ nonneg (of_int a) :=
prerat.nonneg_of_int a
private theorem nonneg_zero : nonneg 0 := prerat.nonneg_zero
private theorem nonneg_add : nonneg a → nonneg b → nonneg (a + b) :=
quot.induction_on₂ a b @prerat.nonneg_add
private theorem nonneg_antisymm : nonneg a → nonneg (-a) → a = 0 :=
quot.induction_on a
(take u, assume H1 H2,
quot.sound (prerat.nonneg_antisymm H1 H2))
private theorem nonneg_total (a : ) : nonneg a nonneg (-a) :=
quot.induction_on a @prerat.nonneg_total
private theorem nonneg_of_pos : pos a → nonneg a :=
quot.induction_on a @prerat.nonneg_of_pos
private theorem ne_zero_of_pos : pos a → a ≠ 0 :=
quot.induction_on a (take u, assume H1 H2, prerat.ne_zero_of_pos H1 (quot.exact H2))
private theorem pos_of_nonneg_of_ne_zero : nonneg a → ¬ a = 0 → pos a :=
quot.induction_on a
(take u,
assume H1 : nonneg ⟦u⟧,
assume H2 : ⟦u⟧ ≠ (rat.of_num 0),
have H3 : ¬ (prerat.equiv u prerat.zero), from assume H, H2 (quot.sound H),
prerat.pos_of_nonneg_of_ne_zero H1 H3)
private theorem nonneg_mul : nonneg a → nonneg b → nonneg (a * b) :=
quot.induction_on₂ a b @prerat.nonneg_mul
private theorem pos_mul : pos a → pos b → pos (a * b) :=
quot.induction_on₂ a b @prerat.pos_mul
private definition decidable_pos (a : ) : decidable (pos a) :=
quot.rec_on_subsingleton a (take u, int.decidable_lt 0 (prerat.num u))
/- define order in terms of pos and nonneg -/
definition lt (a b : ) : Prop := pos (b - a)
definition le (a b : ) : Prop := nonneg (b - a)
definition gt [reducible] (a b : ) := lt b a
definition ge [reducible] (a b : ) := le b a
infix [priority rat.prio] < := rat.lt
infix [priority rat.prio] <= := rat.le
infix [priority rat.prio] ≤ := rat.le
infix [priority rat.prio] >= := rat.ge
infix [priority rat.prio] ≥ := rat.ge
infix [priority rat.prio] > := rat.gt
theorem of_int_lt_of_int (a b : ) : of_int a < of_int b ↔ (#int a < b) :=
iff.symm (calc
(#int a < b) ↔ (#int b - a > 0) : iff.symm !int.sub_pos_iff_lt
... ↔ pos (of_int (#int b - a)) : iff.symm !pos_of_int
... ↔ pos (of_int b - of_int a) : !of_int_sub ▸ iff.rfl
... ↔ of_int a < of_int b : iff.rfl)
theorem of_int_le_of_int (a b : ) : of_int a ≤ of_int b ↔ (#int a ≤ b) :=
iff.symm (calc
(#int a ≤ b) ↔ (#int b - a ≥ 0) : iff.symm !int.sub_nonneg_iff_le
... ↔ nonneg (of_int (#int b - a)) : iff.symm !nonneg_of_int
... ↔ nonneg (of_int b - of_int a) : !of_int_sub ▸ iff.rfl
... ↔ of_int a ≤ of_int b : iff.rfl)
theorem of_int_pos (a : ) : (of_int a > 0) ↔ (#int a > 0) := !of_int_lt_of_int
theorem of_int_nonneg (a : ) : (of_int a ≥ 0) ↔ (#int a ≥ 0) := !of_int_le_of_int
theorem of_nat_lt_of_nat (a b : ) : of_nat a < of_nat b ↔ (#nat a < b) :=
by rewrite [*of_nat_eq, propext !of_int_lt_of_int]; apply int.of_nat_lt_of_nat
theorem of_nat_le_of_nat (a b : ) : of_nat a ≤ of_nat b ↔ (#nat a ≤ b) :=
by rewrite [*of_nat_eq, propext !of_int_le_of_int]; apply int.of_nat_le_of_nat
theorem of_nat_pos (a : ) : (of_nat a > 0) ↔ (#nat a > nat.zero) :=
!of_nat_lt_of_nat
theorem of_nat_nonneg (a : ) : (of_nat a ≥ 0) :=
iff.mp' !of_nat_le_of_nat !nat.zero_le
theorem le.refl (a : ) : a ≤ a :=
by rewrite [↑rat.le, sub_self]; apply nonneg_zero
theorem le.trans (H1 : a ≤ b) (H2 : b ≤ c) : a ≤ c :=
assert H3 : nonneg (c - b + (b - a)), from nonneg_add H2 H1,
begin
revert H3,
rewrite [↑rat.sub, add.assoc, neg_add_cancel_left],
intro H3, apply H3
end
theorem le.antisymm (H1 : a ≤ b) (H2 : b ≤ a) : a = b :=
have H3 : nonneg (-(a - b)), from !neg_sub⁻¹ ▸ H1,
have H4 : a - b = 0, from nonneg_antisymm H2 H3,
eq_of_sub_eq_zero H4
theorem le.total (a b : ) : a ≤ b b ≤ a :=
or.elim (nonneg_total (b - a))
(assume H, or.inl H)
(assume H, or.inr (!neg_sub ▸ H))
theorem le.by_cases {P : Prop} (a b : ) (H : a ≤ b → P) (H2 : b ≤ a → P) : P :=
or.elim (!rat.le.total) H H2
theorem lt_iff_le_and_ne (a b : ) : a < b ↔ a ≤ b ∧ a ≠ b :=
iff.intro
(assume H : a < b,
have H1 : b - a ≠ 0, from ne_zero_of_pos H,
have H2 : a ≠ b, from ne.symm (assume H', H1 (H' ▸ !sub_self)),
and.intro (nonneg_of_pos H) H2)
(assume H : a ≤ b ∧ a ≠ b,
obtain aleb aneb, from H,
have H1 : b - a ≠ 0, from (assume H', aneb (eq_of_sub_eq_zero H')⁻¹),
pos_of_nonneg_of_ne_zero aleb H1)
theorem le_iff_lt_or_eq (a b : ) : a ≤ b ↔ a < b a = b :=
iff.intro
(assume H : a ≤ b,
decidable.by_cases
(assume H1 : a = b, or.inr H1)
(assume H1 : a ≠ b, or.inl (iff.mp' !lt_iff_le_and_ne (and.intro H H1))))
(assume H : a < b a = b,
or.elim H
(assume H1 : a < b, and.left (iff.mp !lt_iff_le_and_ne H1))
(assume H1 : a = b, H1 ▸ !le.refl))
theorem to_nonneg : a ≥ 0 → nonneg a :=
by intros; rewrite -sub_zero; eassumption
theorem add_le_add_left (H : a ≤ b) (c : ) : c + a ≤ c + b :=
have H1 : c + b - (c + a) = b - a,
by rewrite [↑sub, neg_add, -add.assoc, add.comm c, add_neg_cancel_right],
show nonneg (c + b - (c + a)), from H1⁻¹ ▸ H
theorem mul_nonneg (H1 : a ≥ (0 : )) (H2 : b ≥ (0 : )) : a * b ≥ (0 : ) :=
have H : nonneg (a * b), from nonneg_mul (to_nonneg H1) (to_nonneg H2),
!sub_zero⁻¹ ▸ H
theorem to_pos : a > 0 → pos a :=
by intros; rewrite -sub_zero; eassumption
theorem mul_pos (H1 : a > (0 : )) (H2 : b > (0 : )) : a * b > (0 : ) :=
have H : pos (a * b), from pos_mul (to_pos H1) (to_pos H2),
!sub_zero⁻¹ ▸ H
definition decidable_lt [instance] : decidable_rel rat.lt :=
take a b, decidable_pos (b - a)
theorem le_of_lt (H : a < b) : a ≤ b := iff.mp' !le_iff_lt_or_eq (or.inl H)
theorem lt_irrefl (a : ) : ¬ a < a :=
take Ha,
let Hand := (iff.mp !lt_iff_le_and_ne) Ha in
(and.right Hand) rfl
theorem not_le_of_gt (H : a < b) : ¬ b ≤ a :=
assume Hba,
let Heq := le.antisymm (le_of_lt H) Hba in
!lt_irrefl (Heq ▸ H)
theorem lt_of_lt_of_le (Hab : a < b) (Hbc : b ≤ c) : a < c :=
let Hab' := le_of_lt Hab in
let Hac := le.trans Hab' Hbc in
(iff.mp' !lt_iff_le_and_ne) (and.intro Hac
(assume Heq, not_le_of_gt (Heq ▸ Hab) Hbc))
theorem lt_of_le_of_lt (Hab : a ≤ b) (Hbc : b < c) : a < c :=
let Hbc' := le_of_lt Hbc in
let Hac := le.trans Hab Hbc' in
(iff.mp' !lt_iff_le_and_ne) (and.intro Hac
(assume Heq, not_le_of_gt (Heq⁻¹ ▸ Hbc) Hab))
theorem zero_lt_one : (0 : ) < 1 := trivial
theorem add_lt_add_left (H : a < b) (c : ) : c + a < c + b :=
let H' := le_of_lt H in
(iff.mp' (lt_iff_le_and_ne _ _)) (and.intro (add_le_add_left H' _)
(take Heq, let Heq' := add_left_cancel Heq in
!lt_irrefl (Heq' ▸ H)))
section migrate_algebra
open [classes] algebra
protected definition discrete_linear_ordered_field [reducible] :
algebra.discrete_linear_ordered_field rat :=
⦃algebra.discrete_linear_ordered_field,
rat.discrete_field,
le_refl := le.refl,
le_trans := @le.trans,
le_antisymm := @le.antisymm,
le_total := @le.total,
le_of_lt := @le_of_lt,
lt_irrefl := lt_irrefl,
lt_of_lt_of_le := @lt_of_lt_of_le,
lt_of_le_of_lt := @lt_of_le_of_lt,
le_iff_lt_or_eq := @le_iff_lt_or_eq,
add_le_add_left := @add_le_add_left,
mul_nonneg := @mul_nonneg,
mul_pos := @mul_pos,
decidable_lt := @decidable_lt,
zero_lt_one := zero_lt_one,
add_lt_add_left := @add_lt_add_left⦄
local attribute rat.discrete_linear_ordered_field [trans-instance]
local attribute rat.discrete_field [instance]
definition min : := algebra.min
definition max : := algebra.max
definition abs : := algebra.abs
definition sign : := algebra.sign
2015-05-12 11:46:34 +00:00
migrate from algebra with rat
replacing has_le.ge → ge, has_lt.gt → gt, sub → sub, dvd → dvd,
divide → divide, max → max, min → min, abs → abs, sign → sign
attribute le.trans lt.trans lt_of_lt_of_le lt_of_le_of_lt ge.trans gt.trans gt_of_gt_of_ge
gt_of_ge_of_gt [trans]
end migrate_algebra
theorem rat_of_nat_abs (a : ) : abs (of_int a) = of_nat (int.nat_abs a) :=
have hsimp [visible] : ∀ n : , of_int (int.neg_succ_of_nat n) = - of_nat (nat.succ n), from λ n, rfl,
int.induction_on a
(take b, abs_of_nonneg (!of_nat_nonneg))
(take b, by rewrite [hsimp, abs_neg, abs_of_nonneg (!of_nat_nonneg)])
definition ubound : := λ a : , nat.succ (int.nat_abs (num a))
theorem ubound_ge (a : ) : of_nat (ubound a) ≥ a :=
have H : abs a * abs (of_int (denom a)) = abs (of_int (num a)), from !abs_mul ▸ !mul_denom ▸ rfl,
have H'' : 1 ≤ abs (of_int (denom a)), begin
have J : of_int (denom a) > 0, from (iff.mp' !of_int_pos) !denom_pos,
rewrite (abs_of_pos J),
apply iff.mp' !of_int_le_of_int,
apply denom_pos
end,
have H' : abs a ≤ abs (of_int (num a)), from
le_of_mul_le_of_ge_one (H ▸ !le.refl) !abs_nonneg H'',
calc
a ≤ abs a : le_abs_self
... ≤ abs (of_int (num a)) : H'
... ≤ abs (of_int (num a)) + 1 : rat.le_add_of_nonneg_right trivial
... = of_nat (int.nat_abs (num a)) + 1 : rat_of_nat_abs
... = of_nat (nat.succ (int.nat_abs (num a))) : of_nat_add
theorem ubound_pos (a : ) : nat.gt (ubound a) nat.zero := !nat.succ_pos
end rat