2013-12-07 21:09:39 +00:00
|
|
|
|
Set: pp::colors
|
|
|
|
|
Set: pp::unicode
|
|
|
|
|
Assumed: f
|
|
|
|
|
Proved: T1
|
|
|
|
|
Proved: T2
|
2013-12-19 20:46:14 +00:00
|
|
|
|
Theorem T1 (a b c : ℤ) (H1 : a = b) (H2 : a = c) : f (f a a) b = f (f b c) a :=
|
2013-12-07 21:09:39 +00:00
|
|
|
|
Congr (Congr (Refl f) (Congr (Congr (Refl f) H1) H2)) (Symm H1)
|
2013-12-19 20:46:14 +00:00
|
|
|
|
Theorem T2 (a b c : ℤ) (H1 : a = b) (H2 : a = c) : f (f a c) = f (f b a) :=
|
2013-12-07 21:09:39 +00:00
|
|
|
|
Congr (Refl f) (Congr (Congr (Refl f) H1) (Symm H2))
|