lean2/src/library/blast/state.h

294 lines
12 KiB
C
Raw Normal View History

/*
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
*/
#pragma once
#include "util/rb_map.h"
#include "kernel/expr.h"
#include "library/tactic/goal.h"
#include "library/blast/hypothesis.h"
namespace lean {
namespace blast {
typedef rb_tree<unsigned, unsigned_cmp> metavar_idx_set;
typedef hypothesis_idx_map<hypothesis> context;
template<typename T>
using metavar_idx_map = typename lean::rb_map<unsigned, T, unsigned_cmp>;
class metavar_decl {
// A metavariable can be assigned to a value that contains references only to the assumptions
// that were available when the metavariable was defined.
hypothesis_idx_set m_assumptions;
expr m_type;
public:
metavar_decl() {}
metavar_decl(hypothesis_idx_set const & a, expr const & t):
m_assumptions(a), m_type(t) {}
/** \brief Return true iff \c h is in the context of the this metavar declaration */
bool contains_href(unsigned hidx) const { return m_assumptions.contains(hidx); }
bool contains_href(expr const & h) const { return contains_href(href_index(h)); }
expr const & get_type() const { return m_type; }
/** \brief Make sure the declaration context of this declaration is a subset of \c other.
\remark Return true iff the context has been modified. */
bool restrict_context_using(metavar_decl const & other);
hypothesis_idx_set get_assumptions() const { return m_assumptions; }
};
class proof_step_cell {
MK_LEAN_RC(); // Declare m_rc counter
void dealloc() { delete this; }
public:
virtual ~proof_step_cell() {}
/** \brief Every proof-step must provide a resolve method.
When the branch created by the proof-step is closed,
a proof pr is provided, and the proof-step can perform two operations
1- setup the next branch and return none_expr
2- finish and return a new proof */
virtual optional<expr> resolve(state & s, expr const & pr) = 0;
};
class proof_step {
proof_step_cell * m_ptr;
public:
proof_step():m_ptr(nullptr) {}
2015-11-09 03:18:40 +00:00
proof_step(proof_step_cell * c):m_ptr(c) { m_ptr->inc_ref(); }
proof_step(proof_step const & s):m_ptr(s.m_ptr) { if (m_ptr) m_ptr->inc_ref(); }
proof_step(proof_step && s):m_ptr(s.m_ptr) { s.m_ptr = nullptr; }
~proof_step() { if (m_ptr) m_ptr->dec_ref(); }
proof_step & operator=(proof_step const & s) { LEAN_COPY_REF(s); }
proof_step & operator=(proof_step && s) { LEAN_MOVE_REF(s); }
optional<expr> resolve(state & s, expr const & pr) {
lean_assert(m_ptr);
return m_ptr->resolve(s, pr);
}
};
class state {
typedef hypothesis_idx_map<hypothesis_idx_set> forward_deps;
typedef rb_map<double, unsigned, double_cmp> todo_queue;
typedef metavar_idx_map<metavar_decl> metavar_decls;
typedef metavar_idx_map<expr> eassignment;
typedef metavar_idx_map<level> uassignment;
typedef hypothesis_idx_map<metavar_idx_set> fixed_by;
typedef list<proof_step> proof_steps;
uassignment m_uassignment;
metavar_decls m_metavar_decls;
eassignment m_eassignment;
// In the following mapping, each entry (h -> {m_1 ... m_n}) means that hypothesis `h` cannot be cleared
// in any branch where the metavariables m_1 ... m_n have not been replaced with the values assigned to them.
// That is, to be able to clear `h` in a branch `B`, we first need to check whether it
// is contained in this mapping or not. If it is, we should check whether any of the
// metavariables `m_1` ... `m_n` occur in `B` (this is a relatively quick check since
// `B` contains an over-approximation of all meta-variables occuring in it (i.e., m_mvar_idxs).
// If this check fails, then we should replace any assigned `m_i` with its value, if the intersection is still
// non-empty, then we cannot clear `h`.
fixed_by m_fixed_by;
unsigned m_depth{0};
proof_steps m_proof_steps;
// Hypothesis/facts in the current state
context m_context;
// We break the set of hypotheses in m_context in 3 sets that are not necessarily disjoint:
// - assumption
// - active
// - todo
//
// The sets active and todo are disjoint.
//
// A hypothesis is an "assumption" if it comes from the input goal,
// "intros" proof step, or an assumption obtained when applying an elimination step.
//
// A hypothesis is derived when it is obtained by forward chaining.
// A derived hypothesis can be in the to-do or active sets.
//
// We say a hypothesis is in the to-do set when the blast haven't process it yet.
hypothesis_idx_set m_assumption;
hypothesis_idx_set m_active;
todo_queue m_todo_queue;
forward_deps m_forward_deps; // given an entry (h -> {h_1, ..., h_n}), we have that each h_i uses h.
expr m_target;
hypothesis_idx_set m_target_deps;
metavar_idx_set m_mvar_idxs;
void add_forward_dep(unsigned hidx_user, unsigned hidx_provider);
void add_deps(expr const & e, hypothesis & h_user, unsigned hidx_user);
void add_deps(hypothesis & h_user, unsigned hidx_user);
/** \brief Compute the weight of a hypothesis with the given type
We use this weight to update the todo_queue. */
double compute_weight(unsigned hidx, expr const & type);
/** \brief This method is invoked when a hypothesis move from todo to active.
We will update indices and data-structures (e.g., congruence closure). */
void update_indices(unsigned hidx);
expr add_hypothesis(unsigned new_hidx, name const & n, expr const & type, expr const & value);
void add_fixed_by(unsigned hidx, unsigned midx);
unsigned add_metavar_decl(metavar_decl const & decl);
goal to_goal(branch const &) const;
#ifdef LEAN_DEBUG
bool check_hypothesis(expr const & e, unsigned hidx, hypothesis const & h) const;
bool check_hypothesis(unsigned hidx, hypothesis const & h) const;
bool check_target() const;
#endif
public:
state();
bool is_uref_assigned(level const & l) const {
lean_assert(is_uref(l));
return m_uassignment.contains(uref_index(l));
}
// u := l
void assign_uref(level const & u, level const & l) {
m_uassignment.insert(uref_index(u), l);
}
level const * get_uref_assignment(level const & l) const {
lean_assert(is_uref_assigned(l));
return m_uassignment.find(uref_index(l));
}
/** \brief Instantiate any assigned uref in \c l with its assignment.
\remark This is not a const method because it may normalize the assignment. */
level instantiate_urefs(level const & l);
/** \brief Create a new metavariable using the given type and context.
\pre ctx must be a subset of the hypotheses in the main branch. */
expr mk_metavar(hypothesis_idx_buffer const & ctx, expr const & type);
expr mk_metavar(hypothesis_idx_set const & ctx, expr const & type);
/** \brief Create a new metavariable using the given type.
The context of this metavariable will be all assumption hypotheses occurring in the main branch. */
expr mk_metavar(expr const & type);
/** \brief Make sure the metavariable declaration context of mref1 is a
subset of the metavariable declaration context of mref2. */
void restrict_mref_context_using(expr const & mref1, expr const & mref2);
bool is_mref_assigned(expr const & e) const {
lean_assert(is_mref(e));
return m_eassignment.contains(mref_index(e));
}
/** \brief Return true iff \c l contains an assigned uref */
bool has_assigned_uref(level const & l) const;
bool has_assigned_uref(levels const & ls) const;
expr const * get_mref_assignment(expr const & e) const {
lean_assert(is_mref(e));
return m_eassignment.find(mref_index(e));
}
// m := e
void assign_mref(expr const & m, expr const & e) {
m_eassignment.insert(mref_index(m), e);
}
/** \brief Return true if \c e contains an assigned mref or uref */
bool has_assigned_uref_mref(expr const & e) const;
/** \brief Instantiate any assigned mref in \c e with its assignment.
\remark This is not a const method because it may normalize the assignment. */
expr instantiate_urefs_mrefs(expr const & e);
expr add_hypothesis(name const & n, expr const & type, expr const & value);
expr add_hypothesis(expr const & type, expr const & value);
/** \brief Return true iff the hypothesis with index \c hidx_user depends on the hypothesis with index
\c hidx_provider. */
bool hidx_depends_on(unsigned hidx_user, unsigned hidx_provider) const;
hypothesis const * get(unsigned hidx) const { return m_context.find(hidx); }
hypothesis const * get(expr const & h) const {
lean_assert(is_href(h));
return get(href_index(h));
}
void for_each_hypothesis(std::function<void(unsigned, hypothesis const &)> const & fn) const { m_context.for_each(fn); }
optional<unsigned> find_active_hypothesis(std::function<bool(unsigned, hypothesis const &)> const & fn) const { // NOLINT
return m_active.find_if([&](unsigned hidx) {
return fn(hidx, *get(hidx));
});
}
/** \brief Activate the next hypothesis in the TODO queue, return none if the TODO queue is empty. */
optional<unsigned> activate_hypothesis();
/** \brief Store in \c r the hypotheses in this branch sorted by depth */
void get_sorted_hypotheses(hypothesis_idx_buffer & r) const;
/** \brief Set target (aka conclusion, aka type of the goal, aka type of the term that
must be synthesize in the current branch) */
void set_target(expr const & t);
expr const & get_target() const { return m_target; }
/** \brief Return true iff the target depends on the given hypothesis */
bool target_depends_on(expr const & h) const { return m_target_deps.contains(href_index(h)); }
bool has_mvar(expr const & e) const { return m_mvar_idxs.contains(mref_index(e)); }
expr expand_hrefs(expr const & e, list<expr> const & hrefs) const;
hypothesis_idx_set get_assumptions() const { return m_assumption; }
metavar_decl const * get_metavar_decl(unsigned idx) const { return m_metavar_decls.find(idx); }
metavar_decl const * get_metavar_decl(expr const & e) const { return get_metavar_decl(mref_index(e)); }
/** \brief Convert current branch into a goal.
This is mainly used for pretty printing. However, in the future, we may use this capability
to invoke the tactic framework from the blast tactic. */
goal to_goal() const;
void display(environment const & env, io_state const & ios) const;
/** Auxiliary object for creating snapshots of the metavariable assignments.
\remark The snapshots are created (and restored) in constant time */
class assignment_snapshot {
state & m_state;
uassignment m_old_uassignment;
eassignment m_old_eassignment;
public:
assignment_snapshot(state & s):
m_state(s),
m_old_uassignment(s.m_uassignment),
m_old_eassignment(s.m_eassignment) {}
void restore() {
m_state.m_uassignment = m_old_uassignment;
m_state.m_eassignment = m_old_eassignment;
}
};
void push_proof_step(proof_step const & ps) {
m_depth++;
m_proof_steps = cons(ps, m_proof_steps);
}
bool has_proof_steps() const {
return static_cast<bool>(m_proof_steps);
}
proof_step top_proof_step() const {
return head(m_proof_steps);
}
void pop_proof_step() {
lean_assert(m_proof_steps);
m_depth--;
m_proof_steps = tail(m_proof_steps);
}
unsigned get_depth() const { return m_depth; }
#ifdef LEAN_DEBUG
bool check_invariant() const;
#endif
};
void initialize_state();
void finalize_state();
}}