83 lines
2.7 KiB
Text
83 lines
2.7 KiB
Text
|
/-
|
|||
|
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
|
|||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|||
|
|
|||
|
Author: Leonardo de Moura
|
|||
|
|
|||
|
Formalization of Theorem 1 from the following paper:
|
|||
|
"The inconsistency of a Brouwerian continuity
|
|||
|
principle with the Curry–Howard interpretation"
|
|||
|
by Martín Escardó and Chuangjie Xu
|
|||
|
-/
|
|||
|
import data.nat
|
|||
|
open nat sigma.ops
|
|||
|
|
|||
|
/- Bounded equality: α and β agree in the first n positions. -/
|
|||
|
definition beq (α β : nat → nat) (n : nat) : Prop :=
|
|||
|
∀ a, a < n → α a = β a
|
|||
|
|
|||
|
notation α `=[`:50 n:50 `]` β:50 := beq α β n
|
|||
|
|
|||
|
lemma pred_beq {α β : nat → nat} {n : nat} : α =[n+1] β → α =[n] β :=
|
|||
|
λ h a altn, h a (lt.step altn)
|
|||
|
|
|||
|
definition continuous (f : (nat → nat) → nat) : Type₁ :=
|
|||
|
∀ α, Σ n, ∀ β, α =[n] β → f α = f β
|
|||
|
|
|||
|
definition zω : nat → nat :=
|
|||
|
λ x, zero
|
|||
|
|
|||
|
definition znkω (n : nat) (k : nat) : nat → nat :=
|
|||
|
λ x, if x < n then 0 else k
|
|||
|
|
|||
|
lemma znkω_succ (n : nat) (k : nat) : znkω (n+1) k 0 = 0 :=
|
|||
|
rfl
|
|||
|
|
|||
|
lemma znkω_bound (n : nat) (k : nat) : znkω n k n = k :=
|
|||
|
if_neg !lt.irrefl
|
|||
|
|
|||
|
lemma zω_eq_znkω (n : nat) (k : nat) : zω =[n] znkω n k :=
|
|||
|
λ a altn, begin esimp [zω, znkω], rewrite [if_pos altn] end
|
|||
|
|
|||
|
section
|
|||
|
hypothesis all_continuous : ∀ f, continuous f
|
|||
|
|
|||
|
definition M (f : (nat → nat) → nat) : nat :=
|
|||
|
(all_continuous f zω).1
|
|||
|
|
|||
|
lemma M_spec (f : (nat → nat) → nat) : ∀ β, zω =[M f] β → f zω = f β :=
|
|||
|
(all_continuous f zω).2
|
|||
|
|
|||
|
definition m := M (λα, zero)
|
|||
|
|
|||
|
definition f β := M (λα, β (α m))
|
|||
|
|
|||
|
lemma β0_eq (β : nat → nat) : ∀ α, zω =[f β] α → β 0 = β (α m) :=
|
|||
|
λ α, M_spec (λα, β (α m)) α
|
|||
|
|
|||
|
lemma not_all_continuous : false :=
|
|||
|
let β := znkω (M f + 1) 1 in
|
|||
|
let α := znkω m (M f + 1) in
|
|||
|
assert βeq₁ : zω =[M f + 1] β, from
|
|||
|
λ (a : nat) (h : a < M f + 1), begin esimp [zω, znkω], rewrite [if_pos h] end,
|
|||
|
assert βeq₂ : zω =[M f] β, from pred_beq βeq₁,
|
|||
|
assert m_eq_fβ : m = f β, from M_spec f β βeq₂,
|
|||
|
assert aux : ∀ α, zω =[m] α → β 0 = β (α m), by rewrite m_eq_fβ at {1}; exact (β0_eq β),
|
|||
|
assert zero_eq_one : 0 = 1, from calc
|
|||
|
0 = β 0 : by rewrite znkω_succ
|
|||
|
... = β (α m) : aux α (zω_eq_znkω m (M f + 1))
|
|||
|
... = β (M f + 1) : by rewrite znkω_bound
|
|||
|
... = 1 : by rewrite znkω_bound,
|
|||
|
nat.no_confusion zero_eq_one
|
|||
|
end
|
|||
|
|
|||
|
/-
|
|||
|
Additional remarks:
|
|||
|
By using the slightly different definition of continuous
|
|||
|
∀ α, ∃ n, ∀ β, α =[n] β → f α = f β
|
|||
|
i.e., using ∃ instead of Σ, we can assume the following axiom
|
|||
|
all_continuous : ∀ f, continuous f
|
|||
|
However, the system becomes inconsistent again if we also assume Hilbert's choice,
|
|||
|
because with Hilbert's choice we can convert ∃ into Σ
|
|||
|
-/
|