lean2/library/theories/combinatorics/choose.lean

119 lines
3.9 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad
Binomial coefficients, "n choose k".
-/
import data.nat.div data.nat.fact
open decidable
namespace nat
/- choose -/
definition choose :
| 0 0 := 1
| 0 (succ k) := 0
| (succ n) 0 := 1
| (succ n) (succ k) := choose n (succ k) + choose n k
theorem choose_zero_right (n : ) : choose n 0 = 1 :=
nat.cases_on n rfl (take m, rfl)
theorem choose_zero_succ (k : ) : choose 0 (succ k) = 0 := rfl
theorem choose_succ_succ (n k : ) : choose (succ n) (succ k) = choose n (succ k) + choose n k := rfl
theorem choose_eq_zero_of_lt {n : } : ∀{k : }, n < k → choose n k = 0 :=
nat.induction_on n
(take k, assume H : 0 < k,
obtain k' (H : k = succ k'), from exists_eq_succ_of_pos H,
by rewrite H)
(take n',
assume IH: ∀ k, n' < k → choose n' k = 0,
take k,
suppose succ n' < k,
obtain k' (keq : k = succ k'), from exists_eq_succ_of_lt this,
assert n' < k', by rewrite keq at this; apply lt_of_succ_lt_succ this,
by rewrite [keq, choose_succ_succ, IH _ this, IH _ (lt.trans this !lt_succ_self)])
theorem choose_self (n : ) : choose n n = 1 :=
begin
induction n with [n, ih],
{apply rfl},
rewrite [choose_succ_succ, ih, choose_eq_zero_of_lt !lt_succ_self]
end
theorem choose_succ_self (n : ) : choose (succ n) n = succ n :=
begin
induction n with [n, ih],
{apply rfl},
rewrite [choose_succ_succ, ih, choose_self, add.comm]
end
theorem choose_one_right (n : ) : choose n 1 = n :=
begin
induction n with [n, ih],
{apply rfl},
rewrite [choose_succ_succ, ih, choose_zero_right]
end
theorem choose_pos {n : } : ∀ {k : }, k ≤ n → choose n k > 0 :=
begin
induction n with [n, ih],
{intros [k, H],
have k = 0, from eq_of_le_of_ge H !zero_le,
subst k, rewrite choose_zero_right; apply zero_lt_one},
intro k,
cases k with k,
{intros, rewrite [choose_zero_right], apply zero_lt_one},
suppose succ k ≤ succ n,
assert k ≤ n, from le_of_succ_le_succ this,
by rewrite [choose_succ_succ]; apply add_pos_right (ih this)
end
-- A key identity. The proof is subtle.
theorem succ_mul_choose_eq (n : ) : ∀ k, succ n * (choose n k) = choose (succ n) (succ k) * succ k :=
begin
induction n with [n, ih],
{intro k,
cases k with k',
{rewrite [*choose_self, one_mul, mul_one]},
{have H : 1 < succ (succ k'), from succ_lt_succ !zero_lt_succ,
rewrite [one_mul, choose_zero_succ, choose_eq_zero_of_lt H, zero_mul]}},
intro k,
cases k with k',
{rewrite [choose_zero_right, choose_one_right]},
rewrite [choose_succ_succ (succ n), mul.right_distrib, -ih (succ k')],
rewrite [choose_succ_succ at {1}, mul.left_distrib, *succ_mul (succ n), mul_succ, -ih k'],
rewrite [*add.assoc, add.left_comm (choose n _)]
end
theorem choose_mul_fact_mul_fact {n : } :
∀ {k : }, k ≤ n → choose n k * fact k * fact (n - k) = fact n :=
begin
induction n using nat.strong_induction_on with [n, ih],
cases n with n,
{intro k H, have k = 0, from eq_zero_of_le_zero H, rewrite this},
intro k,
intro H, -- k ≤ n,
cases k with k,
{rewrite [choose_zero_right, fact_zero, *one_mul]},
have k ≤ n, from le_of_succ_le_succ H,
show choose (succ n) (succ k) * fact (succ k) * fact (succ n - succ k) = fact (succ n), from
begin
rewrite [succ_sub_succ, fact_succ, -mul.assoc, -succ_mul_choose_eq],
rewrite [fact_succ n, -ih n !lt_succ_self this, *mul.assoc]
end
end
theorem choose_def_alt {n k : } (H : k ≤ n) : choose n k = fact n div (fact k * fact (n -k)) :=
eq.symm (div_eq_of_eq_mul_left (mul_pos !fact_pos !fact_pos)
(by rewrite [-mul.assoc, choose_mul_fact_mul_fact H]))
theorem fact_mul_fact_dvd_fact {n k : } (H : k ≤ n) : fact k * fact (n - k) fact n :=
by rewrite [-choose_mul_fact_mul_fact H, mul.assoc]; apply dvd_mul_left
end nat