2014-12-08 02:17:15 +00:00
|
|
|
-- check @eq.rec
|
|
|
|
-- universe variable l_1
|
|
|
|
-- variables {A A' : Type.{l_1}} {e_1 : A = A'} {a : A}
|
|
|
|
-- check @eq.rec.{l_1 l_1+1} Type.{l_1} A (fun (A' : Type.{l_1}) (e_1 : A = A'), A') a A' e_1
|
|
|
|
open nat
|
|
|
|
|
|
|
|
inductive vec (A : Type) : nat → Type :=
|
2015-02-26 01:00:10 +00:00
|
|
|
| nil {} : vec A zero
|
|
|
|
| cons : Π {n}, A → vec A n → vec A (succ n)
|
2014-12-08 02:17:15 +00:00
|
|
|
|
|
|
|
structure S (A : Type) (a : A) (n : nat) (v : vec A n) :=
|
|
|
|
mk :: (fa : A)
|
|
|
|
|
|
|
|
set_option pp.implicit true
|
|
|
|
|
|
|
|
#telescope_eq Π (A : Type) (a : A) (b : A) (c : nat) (d : vec A c) (e : S A a c d), nat
|