2013-08-30 23:34:41 +00:00
|
|
|
|
Variable N : Type
|
|
|
|
|
Variable h : N -> N -> N
|
|
|
|
|
|
|
|
|
|
Theorem CongrH {a1 a2 b1 b2 : N} (H1 : a1 = b1) (H2 : a2 = b2) : (h a1 a2) = (h b1 b2) :=
|
|
|
|
|
Congr (Congr (Refl h) H1) H2
|
|
|
|
|
|
|
|
|
|
(* Display the theorem showing implicit arguments *)
|
2013-12-19 05:18:45 +00:00
|
|
|
|
SetOption lean::pp::implicit true
|
2013-08-30 23:34:41 +00:00
|
|
|
|
Show Environment 2
|
|
|
|
|
|
|
|
|
|
(* Display the theorem hiding implicit arguments *)
|
2013-12-19 05:18:45 +00:00
|
|
|
|
SetOption lean::pp::implicit false
|
2013-08-30 23:34:41 +00:00
|
|
|
|
Show Environment 2
|
|
|
|
|
|
|
|
|
|
Theorem Example1 (a b c d : N) (H: (a = b ∧ b = c) ∨ (a = d ∧ d = c)) : (h a b) = (h c b) :=
|
|
|
|
|
DisjCases H
|
|
|
|
|
(fun H1 : a = b ∧ b = c,
|
|
|
|
|
CongrH (Trans (Conjunct1 H1) (Conjunct2 H1)) (Refl b))
|
|
|
|
|
(fun H1 : a = d ∧ d = c,
|
|
|
|
|
CongrH (Trans (Conjunct1 H1) (Conjunct2 H1)) (Refl b))
|
|
|
|
|
|
|
|
|
|
(* Show proof of the last theorem with all implicit arguments *)
|
2013-12-19 05:18:45 +00:00
|
|
|
|
SetOption lean::pp::implicit true
|
2013-08-30 23:34:41 +00:00
|
|
|
|
Show Environment 1
|
|
|
|
|
|
|
|
|
|
(* Using placeholders to hide the type of H1 *)
|
|
|
|
|
Theorem Example2 (a b c d : N) (H: (a = b ∧ b = c) ∨ (a = d ∧ d = c)) : (h a b) = (h c b) :=
|
|
|
|
|
DisjCases H
|
|
|
|
|
(fun H1 : _,
|
|
|
|
|
CongrH (Trans (Conjunct1 H1) (Conjunct2 H1)) (Refl b))
|
|
|
|
|
(fun H1 : _,
|
|
|
|
|
CongrH (Trans (Conjunct1 H1) (Conjunct2 H1)) (Refl b))
|
|
|
|
|
|
2013-12-19 05:18:45 +00:00
|
|
|
|
SetOption lean::pp::implicit true
|
2013-08-30 23:34:41 +00:00
|
|
|
|
Show Environment 1
|
|
|
|
|
|
|
|
|
|
(* Same example but the first conjuct has unnecessary stuff *)
|
|
|
|
|
Theorem Example3 (a b c d e : N) (H: (a = b ∧ b = e ∧ b = c) ∨ (a = d ∧ d = c)) : (h a b) = (h c b) :=
|
|
|
|
|
DisjCases H
|
|
|
|
|
(fun H1 : _,
|
|
|
|
|
CongrH (Trans (Conjunct1 H1) (Conjunct2 (Conjunct2 H1))) (Refl b))
|
|
|
|
|
(fun H1 : _,
|
|
|
|
|
CongrH (Trans (Conjunct1 H1) (Conjunct2 H1)) (Refl b))
|
|
|
|
|
|
2013-12-19 05:18:45 +00:00
|
|
|
|
SetOption lean::pp::implicit false
|
2013-08-30 23:34:41 +00:00
|
|
|
|
Show Environment 1
|
2013-08-31 21:24:07 +00:00
|
|
|
|
|
|
|
|
|
Theorem Example4 (a b c d e : N) (H: (a = b ∧ b = e ∧ b = c) ∨ (a = d ∧ d = c)) : (h a c) = (h c a) :=
|
|
|
|
|
DisjCases H
|
|
|
|
|
(fun H1 : _,
|
|
|
|
|
let AeqC := Trans (Conjunct1 H1) (Conjunct2 (Conjunct2 H1))
|
|
|
|
|
in CongrH AeqC (Symm AeqC))
|
|
|
|
|
(fun H1 : _,
|
|
|
|
|
let AeqC := Trans (Conjunct1 H1) (Conjunct2 H1)
|
|
|
|
|
in CongrH AeqC (Symm AeqC))
|
|
|
|
|
|
2013-12-19 05:18:45 +00:00
|
|
|
|
SetOption lean::pp::implicit false
|
2013-08-31 21:24:07 +00:00
|
|
|
|
Show Environment 1
|