lean2/hott/homotopy/sphere.hlean

408 lines
14 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
Declaration of the n-spheres
-/
import .susp types.trunc
open eq nat susp bool is_trunc unit pointed algebra
/-
We can define spheres with the following possible indices:
- trunc_index (defining S^-2 = S^-1 = empty)
- nat (forgetting that S^-1 = empty)
- nat, but counting wrong (S^0 = empty, S^1 = bool, ...)
- some new type "integers >= -1"
We choose the last option here.
-/
/- Sphere levels -/
inductive sphere_index : Type₀ :=
| minus_one : sphere_index
| succ : sphere_index → sphere_index
notation `ℕ₋₁` := sphere_index
namespace trunc_index
definition sub_one [reducible] (n : ℕ₋₁) : ℕ₋₂ :=
sphere_index.rec_on n -2 (λ n k, k.+1)
postfix `..-1`:(max+1) := sub_one
definition of_sphere_index [reducible] (n : ℕ₋₁) : ℕ₋₂ :=
n..-1.+1
-- we use a double dot to distinguish with the notation .-1 in trunc_index (of type → ℕ₋₂)
end trunc_index
namespace sphere_index
/-
notation for sphere_index is -1, 0, 1, ...
from 0 and up this comes from a coercion from num to sphere_index (via nat)
-/
postfix `.+1`:(max+1) := sphere_index.succ
postfix `.+2`:(max+1) := λ(n : sphere_index), (n .+1 .+1)
notation `-1` := minus_one
definition has_zero_sphere_index [instance] : has_zero ℕ₋₁ :=
has_zero.mk (succ minus_one)
definition has_one_sphere_index [instance] : has_one ℕ₋₁ :=
has_one.mk (succ (succ minus_one))
definition add_plus_one (n m : ℕ₋₁) : ℕ₋₁ :=
sphere_index.rec_on m n (λ k l, l .+1)
-- addition of sphere_indices, where (-1 + -1) is defined to be -1.
protected definition add (n m : ℕ₋₁) : ℕ₋₁ :=
sphere_index.cases_on m
(sphere_index.cases_on n -1 id)
(sphere_index.rec n (λn' r, succ r))
inductive le (a : ℕ₋₁) : ℕ₋₁ → Type :=
| sp_refl : le a a
| step : Π {b}, le a b → le a (b.+1)
infix ` +1+ `:65 := sphere_index.add_plus_one
definition has_add_sphere_index [instance] [priority 2000] [reducible] : has_add ℕ₋₁ :=
has_add.mk sphere_index.add
definition has_le_sphere_index [instance] : has_le ℕ₋₁ :=
has_le.mk sphere_index.le
definition sub_one [reducible] (n : ) : ℕ₋₁ :=
nat.rec_on n -1 (λ n k, k.+1)
postfix `..-1`:(max+1) := sub_one
definition of_nat [coercion] [reducible] (n : ) : ℕ₋₁ :=
n..-1.+1
-- we use a double dot to distinguish with the notation .-1 in trunc_index (of type → ℕ₋₂)
definition add_one [reducible] (n : ℕ₋₁) : :=
sphere_index.rec_on n 0 (λ n k, nat.succ k)
definition add_plus_one_of_nat (n m : ) : (n +1+ m) = sphere_index.of_nat (n + m + 1) :=
begin
induction m with m IH,
{ reflexivity },
{ exact ap succ IH}
end
definition succ_sub_one (n : ) : (nat.succ n)..-1 = n :> ℕ₋₁ :=
idp
definition add_sub_one (n m : ) : (n + m)..-1 = n..-1 +1+ m..-1 :> ℕ₋₁ :=
begin
induction m with m IH,
{ reflexivity },
{ exact ap succ IH }
end
definition succ_le_succ {n m : ℕ₋₁} (H : n ≤ m) : n.+1 ≤[ℕ₋₁] m.+1 :=
by induction H with m H IH; apply le.sp_refl; exact le.step IH
definition minus_one_le (n : ℕ₋₁) : -1 ≤[ℕ₋₁] n :=
by induction n with n IH; apply le.sp_refl; exact le.step IH
open decidable
protected definition has_decidable_eq [instance] : Π(n m : ℕ₋₁), decidable (n = m)
| has_decidable_eq -1 -1 := inl rfl
| has_decidable_eq (n.+1) -1 := inr (by contradiction)
| has_decidable_eq -1 (m.+1) := inr (by contradiction)
| has_decidable_eq (n.+1) (m.+1) :=
match has_decidable_eq n m with
| inl xeqy := inl (by rewrite xeqy)
| inr xney := inr (λ h : succ n = succ m, by injection h with xeqy; exact absurd xeqy xney)
end
definition not_succ_le_minus_two {n : sphere_index} (H : n .+1 ≤[ℕ₋₁] -1) : empty :=
by cases H
protected definition le_trans {n m k : ℕ₋₁} (H1 : n ≤[ℕ₋₁] m) (H2 : m ≤[ℕ₋₁] k) : n ≤[ℕ₋₁] k :=
begin
induction H2 with k H2 IH,
{ exact H1},
{ exact le.step IH}
end
definition le_of_succ_le_succ {n m : ℕ₋₁} (H : n.+1 ≤[ℕ₋₁] m.+1) : n ≤[ℕ₋₁] m :=
begin
cases H with m H',
{ apply le.sp_refl},
{ exact sphere_index.le_trans (le.step !le.sp_refl) H'}
end
theorem not_succ_le_self {n : ℕ₋₁} : ¬n.+1 ≤[ℕ₋₁] n :=
begin
induction n with n IH: intro H,
{ exact not_succ_le_minus_two H},
{ exact IH (le_of_succ_le_succ H)}
end
protected definition le_antisymm {n m : ℕ₋₁} (H1 : n ≤[ℕ₋₁] m) (H2 : m ≤[ℕ₋₁] n) : n = m :=
begin
induction H2 with n H2 IH,
{ reflexivity},
{ exfalso, apply @not_succ_le_self n, exact sphere_index.le_trans H1 H2}
end
protected definition le_succ {n m : ℕ₋₁} (H1 : n ≤[ℕ₋₁] m): n ≤[ℕ₋₁] m.+1 :=
le.step H1
definition add_plus_one_minus_one (n : ℕ₋₁) : n +1+ -1 = n := idp
definition add_plus_one_succ (n m : ℕ₋₁) : n +1+ (m.+1) = (n +1+ m).+1 := idp
definition minus_one_add_plus_one (n : ℕ₋₁) : -1 +1+ n = n :=
begin induction n with n IH, reflexivity, exact ap succ IH end
definition succ_add_plus_one (n m : ℕ₋₁) : (n.+1) +1+ m = (n +1+ m).+1 :=
begin induction m with m IH, reflexivity, exact ap succ IH end
definition sphere_index_of_nat_add_one (n : ℕ₋₁) : sphere_index.of_nat (add_one n) = n.+1 :=
begin induction n with n IH, reflexivity, exact ap succ IH end
definition add_one_succ (n : ℕ₋₁) : add_one (n.+1) = succ (add_one n) :=
by reflexivity
definition add_one_sub_one (n : ) : add_one (n..-1) = n :=
begin induction n with n IH, reflexivity, exact ap nat.succ IH end
definition add_one_of_nat (n : ) : add_one n = nat.succ n :=
ap nat.succ (add_one_sub_one n)
definition sphere_index.of_nat_succ (n : )
: sphere_index.of_nat (nat.succ n) = (sphere_index.of_nat n).+1 :=
begin induction n with n IH, reflexivity, exact ap succ IH end
/-
warning: if this coercion is available, the coercion → ℕ₋₂ is the composition of the coercions
→ ℕ₋₁ → ℕ₋₂. We don't want this composition as coercion, because it has worse computational
properties. You can rewrite it with trans_to_of_sphere_index_eq defined below.
-/
attribute trunc_index.of_sphere_index [coercion]
end sphere_index open sphere_index
definition weak_order_sphere_index [trans_instance] [reducible] : weak_order sphere_index :=
weak_order.mk le sphere_index.le.sp_refl @sphere_index.le_trans @sphere_index.le_antisymm
namespace trunc_index
definition sub_two_eq_sub_one_sub_one (n : ) : n.-2 = n..-1..-1 :=
begin
induction n with n IH,
{ reflexivity},
{ exact ap trunc_index.succ IH}
end
definition of_nat_sub_one (n : )
: (sphere_index.of_nat n)..-1 = (trunc_index.sub_two n).+1 :=
begin
induction n with n IH,
{ reflexivity},
{ exact ap trunc_index.succ IH}
end
definition sub_one_of_sphere_index (n : )
: of_sphere_index n..-1 = (trunc_index.sub_two n).+1 :=
begin
induction n with n IH,
{ reflexivity},
{ exact ap trunc_index.succ IH}
end
definition succ_sub_one (n : ℕ₋₁) : n.+1..-1 = n :> ℕ₋₂ :=
idp
definition of_sphere_index_of_nat (n : )
: of_sphere_index (sphere_index.of_nat n) = of_nat n :> ℕ₋₂ :=
begin
induction n with n IH,
{ reflexivity},
{ exact ap trunc_index.succ IH}
end
definition trans_to_of_sphere_index_eq (n : )
: trunc_index._trans_to_of_sphere_index n = of_nat n :> ℕ₋₂ :=
of_sphere_index_of_nat n
definition trunc_index_of_nat_add_one (n : ℕ₋₁)
: trunc_index.of_nat (add_one n) = (of_sphere_index n).+1 :=
begin induction n with n IH, reflexivity, exact ap succ IH end
definition of_sphere_index_succ (n : ℕ₋₁) : of_sphere_index (n.+1) = (of_sphere_index n).+1 :=
begin induction n with n IH, reflexivity, exact ap succ IH end
end trunc_index
open sphere_index equiv
definition sphere (n : ℕ₋₁) : Type₀ := iterate_susp (add_one n) empty
namespace sphere
export [notation] sphere_index
definition base {n : } : sphere n := north
definition pointed_sphere [instance] [constructor] (n : ) : pointed (sphere n) :=
pointed.mk base
definition psphere [constructor] (n : ) : Type* := pointed.mk' (sphere n)
namespace ops
abbreviation S := sphere
notation `S*` := psphere
end ops
open sphere.ops
definition sphere_minus_one : S -1 = empty := idp
definition sphere_succ [unfold_full] (n : ℕ₋₁) : S n.+1 = susp (S n) := idp
definition psphere_succ [unfold_full] (n : ) : S* (n + 1) = psusp (S* n) := idp
definition psphere_eq_iterate_susp (n : )
: S* n = pointed.MK (iterate_susp (succ n) empty) !north :=
begin
esimp,
apply ap (λx, pointed.MK (susp x) (@north x)); apply ap (λx, iterate_susp x empty),
apply add_one_sub_one
end
definition equator [constructor] (n : ) : S* n →* Ω (S* (succ n)) :=
loop_psusp_unit (S* n)
definition surf {n : } : Ω[n] (S* n) :=
begin
induction n with n s,
{ exact south },
{ exact (loopn_succ_in (S* (succ n)) n)⁻¹ᵉ* (apn n (equator n) s) }
end
definition bool_of_sphere [unfold 1] : S 0 → bool :=
proof susp.rec ff tt (λx, empty.elim x) qed
definition sphere_of_bool [unfold 1] : bool → S 0
| ff := proof north qed
| tt := proof south qed
definition sphere_equiv_bool [constructor] : S 0 ≃ bool :=
equiv.MK bool_of_sphere
sphere_of_bool
(λb, match b with | tt := idp | ff := idp end)
(λx, proof susp.rec_on x idp idp (empty.rec _) qed)
definition psphere_pequiv_pbool [constructor] : S* 0 ≃* pbool :=
pequiv_of_equiv sphere_equiv_bool idp
definition sphere_eq_bool : S 0 = bool :=
ua sphere_equiv_bool
definition sphere_eq_pbool : S* 0 = pbool :=
pType_eq sphere_equiv_bool idp
definition psphere_pequiv_iterate_psusp (n : ) : psphere n ≃* iterate_psusp n pbool :=
begin
induction n with n e,
{ exact psphere_pequiv_pbool },
{ exact psusp_pequiv e }
end
definition psphere_pmap_pequiv' (A : Type*) (n : ) : ppmap (S* n) A ≃* Ω[n] A :=
begin
revert A, induction n with n IH: intro A,
{ refine _ ⬝e* !ppmap_pbool_pequiv, exact pequiv_ppcompose_right psphere_pequiv_pbool⁻¹ᵉ* },
{ refine psusp_adjoint_loop (S* n) A ⬝e* IH (Ω A) ⬝e* !loopn_succ_in⁻¹ᵉ* }
end
definition psphere_pmap_pequiv (A : Type*) (n : ) : ppmap (S* n) A ≃* Ω[n] A :=
begin
fapply pequiv_change_fun,
{ exact psphere_pmap_pequiv' A n },
{ exact papn_fun A surf },
{ revert A, induction n with n IH: intro A,
{ reflexivity },
{ intro f, refine ap !loopn_succ_in⁻¹ᵉ* (IH (Ω A) _ ⬝ !apn_pcompose _) ⬝ _,
exact !loopn_succ_in_inv_natural⁻¹* _ }}
end
protected definition elim {n : } {P : Type*} (p : Ω[n] P) : S* n →* P :=
!psphere_pmap_pequiv⁻¹ᵉ* p
-- definition elim_surf {n : } {P : Type*} (p : Ω[n] P) : apn n (sphere.elim p) surf = p :=
-- begin
-- induction n with n IH,
-- { esimp [apn,surf,sphere.elim,psphere_pmap_equiv], apply sorry},
-- { apply sorry}
-- end
end sphere
namespace sphere
open is_conn trunc_index sphere_index sphere.ops
-- Corollary 8.2.2
theorem is_conn_sphere [instance] (n : ℕ₋₁) : is_conn (n..-1) (S n) :=
begin
induction n with n IH,
{ apply is_conn_minus_two },
{ rewrite [trunc_index.succ_sub_one n, sphere.sphere_succ],
apply is_conn_susp }
end
theorem is_conn_psphere [instance] (n : ) : is_conn (n.-1) (S* n) :=
transport (λx, is_conn x (sphere n)) (of_nat_sub_one n) (is_conn_sphere n)
end sphere
open sphere sphere.ops
namespace is_trunc
open trunc_index
variables {n : } {A : Type}
definition is_trunc_of_psphere_pmap_equiv_constant
(H : Π(a : A) (f : S* n →* pointed.Mk a) (x : S n), f x = f base) : is_trunc (n.-2.+1) A :=
begin
apply iff.elim_right !is_trunc_iff_is_contr_loop,
intro a,
apply is_trunc_equiv_closed, exact !psphere_pmap_pequiv,
fapply is_contr.mk,
{ exact pmap.mk (λx, a) idp},
{ intro f, fapply pmap_eq,
{ intro x, esimp, refine !respect_pt⁻¹ ⬝ (!H ⬝ !H⁻¹)},
{ rewrite [▸*,con.right_inv,▸*,con.left_inv]}}
end
definition is_trunc_iff_map_sphere_constant
(H : Π(f : S n → A) (x : S n), f x = f base) : is_trunc (n.-2.+1) A :=
begin
apply is_trunc_of_psphere_pmap_equiv_constant,
intros, cases f with f p, esimp at *, apply H
end
definition psphere_pmap_equiv_constant_of_is_trunc' [H : is_trunc (n.-2.+1) A]
(a : A) (f : S* n →* pointed.Mk a) (x : S n) : f x = f base :=
begin
let H' := iff.elim_left (is_trunc_iff_is_contr_loop n A) H a,
note H'' := @is_trunc_equiv_closed_rev _ _ _ !psphere_pmap_pequiv H',
esimp at H'',
have p : f = pmap.mk (λx, f base) (respect_pt f),
by apply is_prop.elim,
exact ap10 (ap pmap.to_fun p) x
end
definition psphere_pmap_equiv_constant_of_is_trunc [H : is_trunc (n.-2.+1) A]
(a : A) (f : S* n →* pointed.Mk a) (x y : S n) : f x = f y :=
let H := psphere_pmap_equiv_constant_of_is_trunc' a f in !H ⬝ !H⁻¹
definition map_sphere_constant_of_is_trunc [H : is_trunc (n.-2.+1) A]
(f : S n → A) (x y : S n) : f x = f y :=
psphere_pmap_equiv_constant_of_is_trunc (f base) (pmap.mk f idp) x y
definition map_sphere_constant_of_is_trunc_self [H : is_trunc (n.-2.+1) A]
(f : S n → A) (x : S n) : map_sphere_constant_of_is_trunc f x x = idp :=
!con.right_inv
end is_trunc