lean2/library/logic/identities.lean

105 lines
4.1 KiB
Text
Raw Normal View History

/-
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad, Leonardo de Moura
Useful logical identities. Since we are not using propositional extensionality, some of the
calculations use the type class support provided by logic.instances.
-/
import logic.connectives logic.quantifiers logic.cast
open decidable
theorem or.right_comm (a b c : Prop) : (a b) c ↔ (a c) b :=
calc
(a b) c ↔ a (b c) : or.assoc
... ↔ a (c b) : {or.comm}
... ↔ (a c) b : iff.symm or.assoc
theorem and.right_comm (a b c : Prop) : (a ∧ b) ∧ c ↔ (a ∧ c) ∧ b :=
calc
(a ∧ b) ∧ c ↔ a ∧ (b ∧ c) : and.assoc
... ↔ a ∧ (c ∧ b) : {and.comm}
... ↔ (a ∧ c) ∧ b : iff.symm and.assoc
theorem or_not_self_iff (a : Prop) [D : decidable a] : a ¬ a ↔ true :=
2015-09-25 03:38:52 +00:00
iff.intro (assume H, trivial) (assume H, em a)
theorem not_or_self_iff (a : Prop) [D : decidable a] : ¬ a a ↔ true :=
iff.intro (λ H, trivial) (λ H, or.swap (em a))
2015-09-25 03:38:52 +00:00
theorem and_not_self_iff (a : Prop) : a ∧ ¬ a ↔ false :=
2015-09-25 03:38:52 +00:00
iff.intro (assume H, (and.right H) (and.left H)) (assume H, false.elim H)
theorem not_and_self_iff (a : Prop) : ¬ a ∧ a ↔ false :=
iff.intro (λ H, and.elim H (by contradiction)) (λ H, false.elim H)
theorem not_not_iff (a : Prop) [D : decidable a] : ¬¬a ↔ a :=
iff.intro by_contradiction not_not_intro
theorem not_not_elim {a : Prop} [D : decidable a] : ¬¬a → a :=
by_contradiction
theorem not_or_iff_not_and_not (a b : Prop) : ¬(a b) ↔ ¬a ∧ ¬b :=
or.imp_distrib
theorem not_or_not_of_not_and {a b : Prop} [Da : decidable a] (H : ¬ (a ∧ b)) : ¬ a ¬ b :=
by_cases (λHa, or.inr (not.mto (and.intro Ha) H)) or.inl
theorem not_or_not_of_not_and' {a b : Prop} [Db : decidable b] (H : ¬ (a ∧ b)) : ¬ a ¬ b :=
by_cases (λHb, or.inl (λHa, H (and.intro Ha Hb))) or.inr
theorem not_and_iff_not_or_not (a b : Prop) [Da : decidable a] :
¬(a ∧ b) ↔ ¬a ¬b :=
iff.intro
not_or_not_of_not_and
(or.rec (not.mto and.left) (not.mto and.right))
theorem or_iff_not_and_not (a b : Prop) [Da : decidable a] [Db : decidable b] :
a b ↔ ¬ (¬a ∧ ¬b) :=
by rewrite [-not_or_iff_not_and_not, not_not_iff]
theorem and_iff_not_or_not (a b : Prop) [Da : decidable a] [Db : decidable b] :
a ∧ b ↔ ¬ (¬ a ¬ b) :=
by rewrite [-not_and_iff_not_or_not, not_not_iff]
theorem imp_iff_not_or (a b : Prop) [Da : decidable a] : (a → b) ↔ ¬a b :=
iff.intro
(by_cases (λHa H, or.inr (H Ha)) (λHa H, or.inl Ha))
(or.rec not.elim imp.intro)
theorem not_implies_iff_and_not (a b : Prop) [Da : decidable a] :
¬(a → b) ↔ a ∧ ¬b :=
calc
¬(a → b) ↔ ¬(¬a b) : {imp_iff_not_or a b}
... ↔ ¬¬a ∧ ¬b : not_or_iff_not_and_not
... ↔ a ∧ ¬b : {not_not_iff a}
theorem and_not_of_not_implies {a b : Prop} [Da : decidable a] (H : ¬ (a → b)) : a ∧ ¬ b :=
iff.mp !not_implies_iff_and_not H
theorem not_implies_of_and_not {a b : Prop} [Da : decidable a] (H : a ∧ ¬ b) : ¬ (a → b) :=
iff.mpr !not_implies_iff_and_not H
theorem peirce (a b : Prop) [D : decidable a] : ((a → b) → a) → a :=
by_cases imp.intro (imp.syl imp.mp not.elim)
theorem forall_not_of_not_exists {A : Type} {p : A → Prop} [D : ∀x, decidable (p x)]
(H : ¬∃x, p x) : ∀x, ¬p x :=
take x, by_cases
(assume Hp : p x, absurd (exists.intro x Hp) H)
imp.id
theorem forall_of_not_exists_not {A : Type} {p : A → Prop} [D : decidable_pred p] :
¬(∃ x, ¬p x) → ∀ x, p x :=
imp.syl (forall_imp_forall (λa, not_not_elim)) forall_not_of_not_exists
theorem exists_not_of_not_forall {A : Type} {p : A → Prop} [D : ∀x, decidable (p x)]
[D' : decidable (∃x, ¬p x)] (H : ¬∀x, p x) :
∃x, ¬p x :=
by_contradiction (λH1, absurd (λx, not_not_elim (forall_not_of_not_exists H1 x)) H)
theorem exists_of_not_forall_not {A : Type} {p : A → Prop} [D : ∀x, decidable (p x)]
[D' : decidable (∃x, p x)] (H : ¬∀x, ¬ p x) :
∃x, p x :=
by_contradiction (imp.syl H forall_not_of_not_exists)