lean2/hott/homotopy/hopf.hlean

225 lines
7.9 KiB
Text
Raw Normal View History

/-
Copyright (c) 2016 Ulrik Buchholtz and Egbert Rijke. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Ulrik Buchholtz, Egbert Rijke
H-spaces and the Hopf construction
-/
import types.equiv .wedge .join
open eq eq.ops equiv is_equiv is_conn is_trunc trunc susp join
namespace hopf
structure h_space [class] (A : Type) extends has_mul A, has_one A :=
(one_mul : ∀a, mul one a = a) (mul_one : ∀a, mul a one = a)
section
variable {A : Type}
variable [H : h_space A]
include H
definition one_mul (a : A) : 1 * a = a := !h_space.one_mul
definition mul_one (a : A) : a * 1 = a := !h_space.mul_one
definition h_space_equiv_closed {B : Type} (f : A ≃ B) : h_space B :=
⦃ h_space, one := f 1, mul := (λb b', f (f⁻¹ b * f⁻¹ b')),
one_mul := by intro b; rewrite [to_left_inv,one_mul,to_right_inv],
mul_one := by intro b; rewrite [to_left_inv,mul_one,to_right_inv] ⦄
/- Lemma 8.5.5.
If A is 0-connected, then left and right multiplication are equivalences -/
variable [K : is_conn 0 A]
include K
definition is_equiv_mul_left [instance] : Π(a : A), is_equiv (λx, a * x) :=
begin
apply is_conn_fun.elim -1 (is_conn_fun_from_unit -1 A 1)
(λa, trunctype.mk' -1 (is_equiv (λx, a * x))),
intro z, change is_equiv (λx : A, 1 * x), apply is_equiv.homotopy_closed id,
intro x, apply inverse, apply one_mul
end
definition is_equiv_mul_right [instance] : Π(a : A), is_equiv (λx, x * a) :=
begin
apply is_conn_fun.elim -1 (is_conn_fun_from_unit -1 A 1)
(λa, trunctype.mk' -1 (is_equiv (λx, x * a))),
intro z, change is_equiv (λx : A, x * 1), apply is_equiv.homotopy_closed id,
intro x, apply inverse, apply mul_one
end
end
section
variable (A : Type)
variables [H : h_space A] [K : is_conn 0 A]
include H K
definition hopf [unfold 4] : susp A → Type :=
susp.elim_type A A (λa, equiv.mk (λx, a * x) !is_equiv_mul_left)
/- Lemma 8.5.7. The total space is A * A -/
open prod prod.ops
protected definition total : sigma (hopf A) ≃ join A A :=
begin
apply equiv.trans (susp.flattening A A A _), unfold join,
apply equiv.trans (pushout.symm pr₂ (λz : A × A, z.1 * z.2)),
fapply pushout.equiv,
{ fapply equiv.MK
(λz : A × A, (z.1 * z.2, z.2))
(λz : A × A, ((λx, x * z.2)⁻¹ z.1, z.2)),
{ intro z, induction z with u v, esimp,
exact prod_eq (right_inv (λx, x * v) u) idp },
{ intro z, induction z with a b, esimp,
exact prod_eq (left_inv (λx, x * b) a) idp } },
{ reflexivity },
{ reflexivity },
{ reflexivity },
{ reflexivity }
end
end
/- If A is a K(G,1), then A is deloopable.
Main lemma of Licata-Finster. -/
section
parameters (A : Type) [T : is_trunc 1 A] [K : is_conn 0 A] [H : h_space A]
(coh : one_mul 1 = mul_one 1 :> (1 * 1 = 1 :> A))
definition P [reducible] : susp A → Type :=
λx, trunc 1 (north = x)
include K H T
local abbreviation codes [reducible] : susp A → Type := hopf A
definition transport_codes_merid (a a' : A)
: transport codes (merid a) a' = a * a' :> A :=
ap10 (elim_type_merid _ _ _ a) a'
definition is_trunc_codes [instance] (x : susp A) : is_trunc 1 (codes x) :=
begin
induction x with a, do 2 apply T, apply is_prop.elimo
end
definition encode₀ {x : susp A} : north = x → codes x :=
λp, transport codes p (by change A; exact 1)
definition encode {x : susp A} : P x → codes x :=
λp, trunc.elim encode₀ p
definition decode' : A → P (@north A) :=
λa, tr (merid a ⬝ (merid 1)⁻¹)
definition transport_codes_merid_one_inv (a : A)
: transport codes (merid 1)⁻¹ a = a :=
ap10 (elim_type_merid_inv _ _ _ 1) a ⬝ begin apply to_inv_eq_of_eq, esimp, refine !one_mul⁻¹ end
proposition encode_decode' (a : A) : encode (decode' a) = a :=
begin
esimp [encode, decode', encode₀],
refine !con_tr ⬝ _,
refine (ap (transport _ _) !transport_codes_merid ⬝ !transport_codes_merid_one_inv) ⬝ _,
apply mul_one
end
include coh
open pointed
proposition homomorphism : Πa a' : A,
tr (merid (a * a')) = tr (merid a' ⬝ (merid 1)⁻¹ ⬝ merid a)
:> trunc 1 (@north A = @south A) :=
begin
fapply @wedge_extension.ext (pointed.MK A 1) (pointed.MK A 1) 0 0 K K
(λa a' : A, tr (merid (a * a')) = tr (merid a' ⬝ (merid 1)⁻¹ ⬝ merid a)),
{ intros a a', apply is_trunc_eq, apply is_trunc_trunc },
{ change Πa : A,
tr (merid (a * 1)) = tr (merid 1 ⬝ (merid 1)⁻¹ ⬝ merid a)
:> trunc 1 (@north A = @south A),
intro a, apply ap tr,
exact calc
merid (a * 1) = merid a : ap merid (mul_one a)
... = merid 1 ⬝ (merid 1)⁻¹ ⬝ merid a
: (idp_con (merid a))⁻¹
⬝ ap (λw, w ⬝ merid a) (con.right_inv (merid 1))⁻¹ },
{ change Πa' : A,
tr (merid (1 * a')) = tr (merid a' ⬝ (merid 1)⁻¹ ⬝ merid 1)
:> trunc 1 (@north A = @south A),
intro a', apply ap tr,
exact calc
merid (1 * a') = merid a' : ap merid (one_mul a')
... = merid a' ⬝ (merid 1)⁻¹ ⬝ merid 1
: ap (λw, merid a' ⬝ w) (con.left_inv (merid 1))⁻¹
⬝ (con.assoc' (merid a') (merid 1)⁻¹ (merid 1)) },
{ apply ap02 tr, esimp, fapply concat2,
{ apply ap02 merid, exact coh⁻¹ },
{ assert e : Π(X : Type)(x y : X)(p : x = y),
(idp_con p)⁻¹ ⬝ ap (λw : x = x, w ⬝ p) (con.right_inv p)⁻¹
= ap (concat p) (con.left_inv p)⁻¹ ⬝ con.assoc' p p⁻¹ p,
{ intros X x y p, cases p, reflexivity },
apply e } }
end
definition decode {x : susp A} : codes x → P x :=
begin
induction x,
{ exact decode' },
{ exact (λa, tr (merid a)) },
{ apply pi.arrow_pathover_left, esimp, intro a',
apply pathover_of_tr_eq, krewrite susp.elim_type_merid, esimp,
krewrite [trunc_transport,eq_transport_r], apply inverse,
apply homomorphism }
end
definition decode_encode {x : susp A} : Πt : P x, decode (encode t) = t :=
begin
apply trunc.rec, intro p, cases p, apply ap tr, apply con.right_inv
end
/-
We define main_lemma by first defining its inverse, because normally equiv.MK changes
the left_inv-component of an equivalence to adjointify it, but in this case we want the
left_inv-component to be encode_decode'. So we adjointify its inverse, so that only the
right_inv-component is changed.
-/
definition main_lemma : trunc 1 (north = north :> susp A) ≃ A :=
(equiv.MK decode' encode decode_encode encode_decode')⁻¹ᵉ
definition main_lemma_point
: ptrunc 1 (Ω(psusp A)) ≃* pointed.MK A 1 :=
pointed.pequiv_of_equiv main_lemma idp
protected definition delooping : Ω (ptrunc 2 (psusp A)) ≃* pointed.MK A 1 :=
loop_ptrunc_pequiv 1 (psusp A) ⬝e* main_lemma_point
/- characterization of the underlying pointed maps -/
definition to_pmap_main_lemma_point_pinv
: main_lemma_point⁻¹ᵉ* ~* !ptr ∘* loop_psusp_unit (pointed.MK A 1) :=
begin
fapply phomotopy.mk,
{ intro a, reflexivity },
{ reflexivity }
end
definition to_pmap_delooping_pinv :
delooping⁻¹ᵉ* ~* Ω→ !ptr ∘* loop_psusp_unit (pointed.MK A 1) :=
begin
refine !trans_pinv ⬝* _,
refine pwhisker_left _ !to_pmap_main_lemma_point_pinv ⬝* _,
refine !passoc⁻¹* ⬝* _,
refine pwhisker_right _ !ap1_ptr⁻¹*,
end
definition hopf_delooping_elim {B : Type*} (f : pointed.MK A 1 →* Ω B) [H2 : is_trunc 2 B] :
Ω→(ptrunc.elim 2 (psusp.elim f)) ∘* (hopf.delooping A coh)⁻¹ᵉ* ~* f :=
begin
refine pwhisker_left _ !to_pmap_delooping_pinv ⬝* _,
refine !passoc⁻¹* ⬝* _,
refine pwhisker_right _ (!ap1_pcompose⁻¹* ⬝* ap1_phomotopy !ptrunc_elim_ptr) ⬝* _,
apply ap1_psusp_elim
end
end
end hopf