2015-05-06 19:51:06 +00:00
|
|
|
import data.set
|
|
|
|
open set function eq.ops
|
|
|
|
|
|
|
|
variables {X Y Z : Type}
|
|
|
|
|
2016-01-04 02:40:56 +00:00
|
|
|
lemma image_compose (f : Y → X) (g : X → Y) (a : set X) : (f ∘ g) ' a = f ' (g ' a) :=
|
2015-08-10 02:04:40 +00:00
|
|
|
ext (take z,
|
2015-05-06 19:51:06 +00:00
|
|
|
iff.intro
|
|
|
|
(assume Hz,
|
|
|
|
obtain x Hx₁ Hx₂, from Hz,
|
2015-06-11 00:00:47 +00:00
|
|
|
by repeat (apply mem_image | assumption | reflexivity))
|
2015-05-06 19:51:06 +00:00
|
|
|
(assume Hz,
|
|
|
|
obtain y [x Hz₁ Hz₂] Hy₂, from Hz,
|
2015-06-11 00:00:47 +00:00
|
|
|
by repeat (apply mem_image | assumption | esimp [compose] | rewrite Hz₂)))
|