lean2/hott/homotopy/freudenthal.hlean

282 lines
11 KiB
Text
Raw Normal View History

/-
Copyright (c) 2016 Floris van Doorn. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Floris van Doorn
The Freudenthal Suspension Theorem
-/
import homotopy.wedge homotopy.circle
open eq is_conn is_trunc pointed susp nat pi equiv is_equiv trunc fiber trunc_index
namespace freudenthal section
parameters {A : Type*} {n : } [is_conn n A]
/-
This proof is ported from Agda
This is the 95% version of the Freudenthal Suspension Theorem, which means that we don't
prove that loop_psusp_unit : A →* Ω(psusp A) is 2n-connected (if A is n-connected),
but instead we only prove that it induces an equivalence on the first 2n homotopy groups.
-/
private definition up (a : A) : north = north :> susp A :=
loop_psusp_unit A a
definition code_merid : A → ptrunc (n + n) A → ptrunc (n + n) A :=
begin
have is_conn n (ptrunc (n + n) A), from !is_conn_trunc,
refine @wedge_extension.ext _ _ n n _ _ (λ x y, ttrunc (n + n) A) _ _ _ _,
{ intros, apply is_trunc_trunc}, -- this subgoal might become unnecessary if
-- type class inference catches it
{ exact tr},
{ exact id},
{ reflexivity}
end
definition code_merid_β_left (a : A) : code_merid a pt = tr a :=
by apply wedge_extension.β_left
definition code_merid_β_right (b : ptrunc (n + n) A) : code_merid pt b = b :=
by apply wedge_extension.β_right
definition code_merid_coh : code_merid_β_left pt = code_merid_β_right pt :=
begin
symmetry, apply eq_of_inv_con_eq_idp, apply wedge_extension.coh
end
definition is_equiv_code_merid (a : A) : is_equiv (code_merid a) :=
begin
have Πa, is_trunc n.-2.+1 (is_equiv (code_merid a)),
from λa, is_trunc_of_le _ !minus_one_le_succ,
refine is_conn.elim (n.-1) _ _ a,
{ esimp, exact homotopy_closed id (homotopy.symm (code_merid_β_right))}
end
definition code_merid_equiv [constructor] (a : A) : trunc (n + n) A ≃ trunc (n + n) A :=
equiv.mk _ (is_equiv_code_merid a)
definition code_merid_inv_pt (x : trunc (n + n) A) : (code_merid_equiv pt)⁻¹ x = x :=
begin
refine ap010 @(is_equiv.inv _) _ x ⬝ _,
{ exact homotopy_closed id (homotopy.symm code_merid_β_right)},
{ apply is_conn.elim_β},
{ reflexivity}
end
definition code [unfold 4] : susp A → Type :=
susp.elim_type (trunc (n + n) A) (trunc (n + n) A) code_merid_equiv
definition is_trunc_code (x : susp A) : is_trunc (n + n) (code x) :=
begin
induction x with a: esimp,
{ exact _},
{ exact _},
{ apply is_prop.elimo}
end
local attribute is_trunc_code [instance]
definition decode_north [unfold 4] : code north → trunc (n + n) (north = north :> susp A) :=
trunc_functor (n + n) up
definition decode_north_pt : decode_north (tr pt) = tr idp :=
ap tr !con.right_inv
definition decode_south [unfold 4] : code south → trunc (n + n) (north = south :> susp A) :=
trunc_functor (n + n) merid
definition encode' {x : susp A} (p : north = x) : code x :=
transport code p (tr pt)
definition encode [unfold 5] {x : susp A} (p : trunc (n + n) (north = x)) : code x :=
begin
induction p with p,
exact transport code p (tr pt)
end
theorem encode_decode_north (c : code north) : encode (decode_north c) = c :=
begin
have H : Πc, is_trunc (n + n) (encode (decode_north c) = c), from _,
esimp at *,
induction c with a,
rewrite [↑[encode, decode_north, up, code], con_tr, elim_type_merid, ▸*,
code_merid_β_left, elim_type_merid_inv, ▸*, code_merid_inv_pt]
end
definition decode_coh_f (a : A) : tr (up pt) =[merid a] decode_south (code_merid a (tr pt)) :=
begin
refine _ ⬝op ap decode_south (code_merid_β_left a)⁻¹,
apply trunc_pathover,
apply eq_pathover_constant_left_id_right,
apply square_of_eq,
exact whisker_right (merid a) !con.right_inv
end
definition decode_coh_g (a' : A) : tr (up a') =[merid pt] decode_south (code_merid pt (tr a')) :=
begin
refine _ ⬝op ap decode_south (code_merid_β_right (tr a'))⁻¹,
apply trunc_pathover,
apply eq_pathover_constant_left_id_right,
apply square_of_eq, refine !inv_con_cancel_right ⬝ !idp_con⁻¹
end
definition decode_coh_lem {A : Type} {a a' : A} (p : a = a')
: whisker_right p (con.right_inv p) = inv_con_cancel_right p p ⬝ (idp_con p)⁻¹ :=
by induction p; reflexivity
theorem decode_coh (a : A) : decode_north =[merid a] decode_south :=
begin
apply arrow_pathover_left, intro c, esimp at *,
induction c with a',
rewrite [↑code, elim_type_merid],
refine @wedge_extension.ext _ _ n n _ _ (λ a a', tr (up a') =[merid a] decode_south
(to_fun (code_merid_equiv a) (tr a'))) _ _ _ _ a a',
{ intros, apply is_trunc_pathover, apply is_trunc_succ, apply is_trunc_trunc},
{ exact decode_coh_f},
{ exact decode_coh_g},
{ clear a a', unfold [decode_coh_f, decode_coh_g], refine ap011 concato_eq _ _,
{ refine ap (λp, trunc_pathover (eq_pathover_constant_left_id_right (square_of_eq p))) _,
apply decode_coh_lem},
{ apply ap (λp, ap decode_south p⁻¹), apply code_merid_coh}}
end
definition decode [unfold 4] {x : susp A} (c : code x) : trunc (n + n) (north = x) :=
begin
induction x with a,
{ exact decode_north c},
{ exact decode_south c},
{ exact decode_coh a}
end
theorem decode_encode {x : susp A} (p : trunc (n + n) (north = x)) : decode (encode p) = p :=
begin
induction p with p, induction p, esimp, apply decode_north_pt
end
parameters (A n)
definition equiv' : trunc (n + n) A ≃ trunc (n + n) (Ω (psusp A)) :=
equiv.MK decode_north encode decode_encode encode_decode_north
definition pequiv' : ptrunc (n + n) A ≃* ptrunc (n + n) (Ω (psusp A)) :=
pequiv_of_equiv equiv' decode_north_pt
-- We don't prove this:
-- theorem freudenthal_suspension : is_conn_fun (n+n) (loop_psusp_unit A) := sorry
end end freudenthal
open algebra group
definition freudenthal_pequiv (A : Type*) {n k : } [is_conn n A] (H : k ≤ 2 * n)
: ptrunc k A ≃* ptrunc k (Ω (psusp A)) :=
have H' : k ≤[ℕ₋₂] n + n,
by rewrite [mul.comm at H, -algebra.zero_add n at {1}]; exact of_nat_le_of_nat H,
ptrunc_pequiv_ptrunc_of_le H' (freudenthal.pequiv' A n)
definition freudenthal_equiv {A : Type*} {n k : } [is_conn n A] (H : k ≤ 2 * n)
: trunc k A ≃ trunc k (Ω (psusp A)) :=
freudenthal_pequiv A H
definition freudenthal_homotopy_group_pequiv (A : Type*) {n k : } [is_conn n A] (H : k ≤ 2 * n)
: π[k + 1] (psusp A) ≃* π[k] A :=
calc
π[k + 1] (psusp A) ≃* π[k] (Ω (psusp A)) : homotopy_group_succ_in (psusp A) k
... ≃* Ω[k] (ptrunc k (Ω (psusp A))) : homotopy_group_pequiv_loop_ptrunc k (Ω (psusp A))
... ≃* Ω[k] (ptrunc k A) : loopn_pequiv_loopn k (freudenthal_pequiv A H)
... ≃* π[k] A : (homotopy_group_pequiv_loop_ptrunc k A)⁻¹ᵉ*
definition freudenthal_homotopy_group_isomorphism (A : Type*) {n k : } [is_conn n A]
(H : k + 1 ≤ 2 * n) : πg[k+2] (psusp A) ≃g πg[k + 1] A :=
begin
fapply isomorphism_of_equiv,
{ exact equiv_of_pequiv (freudenthal_homotopy_group_pequiv A H)},
{ intro g h,
refine _ ⬝ !homotopy_group_pequiv_loop_ptrunc_inv_con,
apply ap !homotopy_group_pequiv_loop_ptrunc⁻¹ᵉ*,
refine ap (loopn_pequiv_loopn _ _) _ ⬝ !loopn_pequiv_loopn_con,
refine ap !homotopy_group_pequiv_loop_ptrunc _ ⬝ !homotopy_group_pequiv_loop_ptrunc_con,
apply homotopy_group_succ_in_con}
end
definition to_pmap_freudenthal_pequiv {A : Type*} (n k : ) [is_conn n A] (H : k ≤ 2 * n)
: freudenthal_pequiv A H ~* ptrunc_functor k (loop_psusp_unit A) :=
begin
fapply phomotopy.mk,
{ intro x, induction x with a, reflexivity },
{ refine !idp_con ⬝ _, refine _ ⬝ ap02 _ !idp_con⁻¹, refine _ ⬝ !ap_compose, apply ap_compose }
end
definition ptrunc_elim_freudenthal_pequiv {A B : Type*} (n k : ) [is_conn n A] (H : k ≤ 2 * n)
(f : A →* Ω B) [is_trunc (k.+1) (B)] :
ptrunc.elim k (Ω→ (psusp.elim f)) ∘* freudenthal_pequiv A H ~* ptrunc.elim k f :=
begin
refine pwhisker_left _ !to_pmap_freudenthal_pequiv ⬝* _,
refine !ptrunc_elim_ptrunc_functor ⬝* _,
exact ptrunc_elim_phomotopy k !ap1_psusp_elim,
end
namespace susp
definition iterate_psusp_stability_pequiv (A : Type*) {k n : } [is_conn 0 A]
(H : k ≤ 2 * n) : π[k + 1] (iterate_psusp (n + 1) A) ≃* π[k] (iterate_psusp n A) :=
have is_conn n (iterate_psusp n A), by rewrite [-zero_add n]; exact _,
freudenthal_homotopy_group_pequiv (iterate_psusp n A) H
definition iterate_psusp_stability_isomorphism (A : Type*) {k n : } [is_conn 0 A]
(H : k + 1 ≤ 2 * n) : πg[k+2] (iterate_psusp (n + 1) A) ≃g πg[k+1] (iterate_psusp n A) :=
have is_conn n (iterate_psusp n A), by rewrite [-zero_add n]; exact _,
freudenthal_homotopy_group_isomorphism (iterate_psusp n A) H
definition stability_helper1 {k n : } (H : k + 2 ≤ 2 * n) : k ≤ 2 * pred n :=
begin
rewrite [mul_pred_right], change pred (pred (k + 2)) ≤ pred (pred (2 * n)),
apply pred_le_pred, apply pred_le_pred, exact H
end
definition stability_helper2 (A : Type) {k n : } (H : k + 2 ≤ 2 * n) :
is_conn (pred n) (iterate_susp (n + 1) A) :=
have Π(n : ), n = -2 + (succ n + 1),
begin intro n, induction n with n IH, reflexivity, exact ap succ IH end,
begin
cases n with n,
{ exfalso, exact not_succ_le_zero _ H},
{ esimp, rewrite [this n], apply is_conn_iterate_susp}
end
definition iterate_susp_stability_pequiv (A : Type) {k n : }
(H : k + 2 ≤ 2 * n) : π[k + 1] (pointed.MK (iterate_susp (n + 2) A) !north) ≃*
π[k ] (pointed.MK (iterate_susp (n + 1) A) !north) :=
have is_conn (pred n) (carrier (pointed.MK (iterate_susp (n + 1) A) !north)), from
stability_helper2 A H,
freudenthal_homotopy_group_pequiv (pointed.MK (iterate_susp (n + 1) A) !north)
(stability_helper1 H)
definition iterate_susp_stability_isomorphism (A : Type) {k n : }
(H : k + 3 ≤ 2 * n) : πg[k+1 +1] (pointed.MK (iterate_susp (n + 2) A) !north) ≃g
πg[k+1] (pointed.MK (iterate_susp (n + 1) A) !north) :=
have is_conn (pred n) (carrier (pointed.MK (iterate_susp (n + 1) A) !north)), from
@stability_helper2 A (k+1) n H,
freudenthal_homotopy_group_isomorphism (pointed.MK (iterate_susp (n + 1) A) !north)
(stability_helper1 H)
definition iterated_freudenthal_pequiv (A : Type*) {n k m : } [HA : is_conn n A] (H : k ≤ 2 * n)
: ptrunc k A ≃* ptrunc k (Ω[m] (iterate_psusp m A)) :=
begin
revert A n k HA H, induction m with m IH: intro A n k HA H,
{ reflexivity},
{ have H2 : succ k ≤ 2 * succ n,
from calc
succ k ≤ succ (2 * n) : succ_le_succ H
... ≤ 2 * succ n : self_le_succ,
exact calc
ptrunc k A ≃* ptrunc k (Ω (psusp A)) : freudenthal_pequiv A H
... ≃* Ω (ptrunc (succ k) (psusp A)) : loop_ptrunc_pequiv
... ≃* Ω (ptrunc (succ k) (Ω[m] (iterate_psusp m (psusp A)))) :
loop_pequiv_loop (IH (psusp A) (succ n) (succ k) _ H2)
... ≃* ptrunc k (Ω[succ m] (iterate_psusp m (psusp A))) : loop_ptrunc_pequiv
... ≃* ptrunc k (Ω[succ m] (iterate_psusp (succ m) A)) :
ptrunc_pequiv_ptrunc _ (loopn_pequiv_loopn _ !iterate_psusp_succ_in)}
end
end susp