47 lines
1,012 B
Text
47 lines
1,012 B
Text
|
--- Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
|||
|
--- Released under Apache 2.0 license as described in the file LICENSE.
|
|||
|
--- Author: Jeremy Avigad
|
|||
|
|
|||
|
import ..instances
|
|||
|
|
|||
|
using relation
|
|||
|
|
|||
|
|
|||
|
section
|
|||
|
|
|||
|
using relation.operations
|
|||
|
|
|||
|
theorem test1 (a b : Prop) (H : a ↔ b) (H1 : a) : b := mp H H1
|
|||
|
|
|||
|
end
|
|||
|
|
|||
|
|
|||
|
section
|
|||
|
|
|||
|
using gensubst
|
|||
|
|
|||
|
theorem test2 (a b c d e : Prop) (H1 : a ↔ b) (H2 : a ∨ c → ¬(d → a)) : b ∨ c → ¬(d → b) :=
|
|||
|
subst H1 H2
|
|||
|
|
|||
|
theorem test3 (a b c d e : Prop) (H1 : a ↔ b) (H2 : a ∨ c → ¬(d → a)) : b ∨ c → ¬(d → b) :=
|
|||
|
H1 ▸ H2
|
|||
|
|
|||
|
end
|
|||
|
|
|||
|
|
|||
|
theorem test4 (a b c d e : Prop) (H1 : a ↔ b) : (a ∨ c → ¬(d → a)) ↔ (b ∨ c → ¬(d → b)) :=
|
|||
|
congr.infer iff iff (λa, (a ∨ c → ¬(d → a))) H1
|
|||
|
|
|||
|
|
|||
|
section
|
|||
|
|
|||
|
using relation.symbols
|
|||
|
|
|||
|
theorem test5 (T : Type) (a b c d : T) (H1 : a = b) (H2 : c = b) (H3 : c = d) : a = d :=
|
|||
|
H1 ⬝ H2⁻¹ ⬝ H3
|
|||
|
|
|||
|
theorem test6 (a b c d : Prop) (H1 : a ↔ b) (H2 : c ↔ b) (H3 : c ↔ d) : a ↔ d :=
|
|||
|
H1 ⬝ (H2⁻¹ ⬝ H3)
|
|||
|
|
|||
|
end
|