lean2/library/algebra/ring_bigops.lean

185 lines
6 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Jeremy Avigad
Properties of finite sums and products in various structures, including ordered rings and fields.
There are two versions of every theorem: one for finsets, and one for finite sets.
-/
import .group_bigops .ordered_field
variables {A B : Type}
variable [deceqA : decidable_eq A]
/-
-- finset versions
-/
namespace finset
section comm_semiring
variable [csB : comm_semiring B]
include deceqA csB
proposition mul_Sum (f : A → B) {s : finset A} (b : B) :
b * (∑ x ∈ s, f x) = ∑ x ∈ s, b * f x :=
begin
induction s with a s ans ih,
{rewrite [+Sum_empty, mul_zero]},
rewrite [Sum_insert_of_not_mem f ans, Sum_insert_of_not_mem (λ x, b * f x) ans],
rewrite [-ih, left_distrib]
end
proposition Sum_mul (f : A → B) {s : finset A} (b : B) :
(∑ x ∈ s, f x) * b = ∑ x ∈ s, f x * b :=
by rewrite [mul.comm _ b, mul_Sum]; apply Sum_ext; intros; apply mul.comm
proposition Prod_eq_zero (f : A → B) {s : finset A} {a : A} (H : a ∈ s) (fa0 : f a = 0) :
(∏ x ∈ s, f x) = 0 :=
begin
induction s with b s bns ih,
{exact absurd H !not_mem_empty},
rewrite [Prod_insert_of_not_mem f bns],
have a = b a ∈ s, from eq_or_mem_of_mem_insert H,
cases this with aeqb ains,
{rewrite [-aeqb, fa0, zero_mul]},
rewrite [ih ains, mul_zero]
end
end comm_semiring
section ordered_comm_group
variable [ocgB : ordered_comm_group B]
include deceqA ocgB
proposition Sum_le_Sum (f g : A → B) {s : finset A} (H: ∀ x, x ∈ s → f x ≤ g x) :
(∑ x ∈ s, f x) ≤ (∑ x ∈ s, g x) :=
begin
induction s with a s ans ih,
{exact le.refl _},
have H1 : f a ≤ g a, from H _ !mem_insert,
have H2 : (∑ x ∈ s, f x) ≤ (∑ x ∈ s, g x), from ih (forall_of_forall_insert H),
rewrite [Sum_insert_of_not_mem f ans, Sum_insert_of_not_mem g ans],
apply add_le_add H1 H2
end
proposition Sum_nonneg (f : A → B) {s : finset A} (H : ∀x, x ∈ s → f x ≥ 0) :
(∑ x ∈ s, f x) ≥ 0 :=
calc
0 = (∑ x ∈ s, 0) : Sum_zero
... ≤ (∑ x ∈ s, f x) : Sum_le_Sum (λ x, 0) f H
proposition Sum_nonpos (f : A → B) {s : finset A} (H : ∀x, x ∈ s → f x ≤ 0) :
(∑ x ∈ s, f x) ≤ 0 :=
calc
0 = (∑ x ∈ s, 0) : Sum_zero
... ≥ (∑ x ∈ s, f x) : Sum_le_Sum f (λ x, 0) H
end ordered_comm_group
section decidable_linear_ordered_comm_group
variable [dloocgB : decidable_linear_ordered_comm_group B]
include deceqA dloocgB
proposition abs_Sum_le (f : A → B) (s : finset A) : abs (∑ x ∈ s, f x) ≤ (∑ x ∈ s, abs (f x)) :=
begin
induction s with a s ans ih,
{rewrite [+Sum_empty, abs_zero], apply le.refl},
rewrite [Sum_insert_of_not_mem f ans, Sum_insert_of_not_mem _ ans],
apply le.trans,
apply abs_add_le_abs_add_abs,
apply add_le_add_left ih
end
end decidable_linear_ordered_comm_group
end finset
/-
-- set versions
-/
namespace set
open classical
section comm_semiring
variable [csB : comm_semiring B]
include csB
proposition mul_Sum (f : A → B) {s : set A} (b : B) :
b * (∑ x ∈ s, f x) = ∑ x ∈ s, b * f x :=
begin
cases (em (finite s)) with fins nfins,
rotate 1,
{rewrite [+Sum_of_not_finite nfins, mul_zero]},
induction fins with a s fins ans ih,
{rewrite [+Sum_empty, mul_zero]},
rewrite [Sum_insert_of_not_mem f ans, Sum_insert_of_not_mem (λ x, b * f x) ans],
rewrite [-ih, left_distrib]
end
proposition Sum_mul (f : A → B) {s : set A} (b : B) :
(∑ x ∈ s, f x) * b = ∑ x ∈ s, f x * b :=
by rewrite [mul.comm _ b, mul_Sum]; apply Sum_ext; intros; apply mul.comm
proposition Prod_eq_zero (f : A → B) {s : set A} [fins : finite s] {a : A} (H : a ∈ s) (fa0 : f a = 0) :
(∏ x ∈ s, f x) = 0 :=
begin
induction fins with b s fins bns ih,
{exact absurd H !not_mem_empty},
rewrite [Prod_insert_of_not_mem f bns],
have a = b a ∈ s, from eq_or_mem_of_mem_insert H,
cases this with aeqb ains,
{rewrite [-aeqb, fa0, zero_mul]},
rewrite [ih ains, mul_zero]
end
end comm_semiring
section ordered_comm_group
variable [ocgB : ordered_comm_group B]
include ocgB
proposition Sum_le_Sum (f g : A → B) {s : set A} (H: ∀₀ x ∈ s, f x ≤ g x) :
(∑ x ∈ s, f x) ≤ (∑ x ∈ s, g x) :=
begin
cases (em (finite s)) with fins nfins,
{induction fins with a s fins ans ih,
{rewrite +Sum_empty; apply le.refl},
{rewrite [Sum_insert_of_not_mem f ans, Sum_insert_of_not_mem g ans],
have H1 : f a ≤ g a, from H !mem_insert,
have H2 : (∑ x ∈ s, f x) ≤ (∑ x ∈ s, g x), from ih (forall_of_forall_insert H),
apply add_le_add H1 H2}},
rewrite [+Sum_of_not_finite nfins],
apply le.refl
end
proposition Sum_nonneg (f : A → B) {s : set A} (H : ∀₀ x ∈ s, f x ≥ 0) :
(∑ x ∈ s, f x) ≥ 0 :=
calc
0 = (∑ x ∈ s, 0) : Sum_zero
... ≤ (∑ x ∈ s, f x) : Sum_le_Sum (λ x, 0) f H
proposition Sum_nonpos (f : A → B) {s : set A} (H : ∀₀ x ∈ s, f x ≤ 0) :
(∑ x ∈ s, f x) ≤ 0 :=
calc
0 = (∑ x ∈ s, 0) : Sum_zero
... ≥ (∑ x ∈ s, f x) : Sum_le_Sum f (λ x, 0) H
end ordered_comm_group
section decidable_linear_ordered_comm_group
variable [dloocgB : decidable_linear_ordered_comm_group B]
include deceqA dloocgB
proposition abs_Sum_le (f : A → B) (s : set A) : abs (∑ x ∈ s, f x) ≤ (∑ x ∈ s, abs (f x)) :=
begin
cases (em (finite s)) with fins nfins,
rotate 1,
{rewrite [+Sum_of_not_finite nfins, abs_zero], apply le.refl},
induction fins with a s fins ans ih,
{rewrite [+Sum_empty, abs_zero], apply le.refl},
rewrite [Sum_insert_of_not_mem f ans, Sum_insert_of_not_mem _ ans],
apply le.trans,
apply abs_add_le_abs_add_abs,
apply add_le_add_left ih
end
end decidable_linear_ordered_comm_group
end set