2014-11-11 21:16:23 +00:00
|
|
|
import data.prod data.unit
|
|
|
|
open prod
|
|
|
|
|
|
|
|
inductive tree (A : Type) : Type :=
|
|
|
|
node : A → forest A → tree A
|
|
|
|
with forest : Type :=
|
|
|
|
nil : forest A,
|
|
|
|
cons : tree A → forest A → forest A
|
|
|
|
|
2014-11-13 00:38:46 +00:00
|
|
|
namespace manual
|
2014-11-11 21:16:23 +00:00
|
|
|
definition tree.below.{l₁ l₂}
|
|
|
|
(A : Type.{l₁})
|
|
|
|
(C₁ : tree A → Type.{l₂})
|
|
|
|
(C₂ : forest A → Type.{l₂})
|
|
|
|
(t : tree A) : Type.{max 1 l₂} :=
|
|
|
|
@tree.rec_on A
|
|
|
|
(λ t : tree A, Type.{max 1 l₂})
|
|
|
|
(λ t : forest A, Type.{max 1 l₂})
|
|
|
|
t
|
|
|
|
(λ (a : A) (f : forest A) (r : Type.{max 1 l₂}), prod.{l₂ (max 1 l₂)} (C₂ f) r)
|
|
|
|
unit.{max 1 l₂}
|
|
|
|
(λ (t : tree A) (f : forest A) (rt : Type.{max 1 l₂}) (rf : Type.{max 1 l₂}),
|
|
|
|
prod.{(max 1 l₂) (max 1 l₂)} (prod.{l₂ (max 1 l₂)} (C₁ t) rt) (prod.{l₂ (max 1 l₂)} (C₂ f) rf))
|
|
|
|
|
|
|
|
definition forest.below.{l₁ l₂}
|
|
|
|
(A : Type.{l₁})
|
|
|
|
(C₁ : tree A → Type.{l₂})
|
|
|
|
(C₂ : forest A → Type.{l₂})
|
|
|
|
(f : forest A) : Type.{max 1 l₂} :=
|
|
|
|
@forest.rec_on A
|
|
|
|
(λ t : tree A, Type.{max 1 l₂})
|
|
|
|
(λ t : forest A, Type.{max 1 l₂})
|
|
|
|
f
|
|
|
|
(λ (a : A) (f : forest A) (r : Type.{max 1 l₂}), prod.{l₂ (max 1 l₂)} (C₂ f) r)
|
|
|
|
unit.{max 1 l₂}
|
|
|
|
(λ (t : tree A) (f : forest A) (rt : Type.{max 1 l₂}) (rf : Type.{max 1 l₂}),
|
|
|
|
prod.{(max 1 l₂) (max 1 l₂)} (prod.{l₂ (max 1 l₂)} (C₁ t) rt) (prod.{l₂ (max 1 l₂)} (C₂ f) rf))
|
|
|
|
|
|
|
|
definition tree.brec_on.{l₁ l₂}
|
|
|
|
(A : Type.{l₁})
|
|
|
|
(C₁ : tree A → Type.{l₂})
|
|
|
|
(C₂ : forest A → Type.{l₂})
|
|
|
|
(t : tree A)
|
|
|
|
(F₁ : Π (t : tree A), tree.below A C₁ C₂ t → C₁ t)
|
|
|
|
(F₂ : Π (f : forest A), forest.below A C₁ C₂ f → C₂ f)
|
|
|
|
: C₁ t :=
|
|
|
|
have general : prod.{l₂ (max 1 l₂)} (C₁ t) (tree.below A C₁ C₂ t), from
|
|
|
|
@tree.rec_on
|
|
|
|
A
|
|
|
|
(λ (t' : tree A), prod.{l₂ (max 1 l₂)} (C₁ t') (tree.below A C₁ C₂ t'))
|
|
|
|
(λ (f' : forest A), prod.{l₂ (max 1 l₂)} (C₂ f') (forest.below A C₁ C₂ f'))
|
|
|
|
t
|
|
|
|
(λ (a : A) (f : forest A) (r : prod.{l₂ (max 1 l₂)} (C₂ f) (forest.below A C₁ C₂ f)),
|
|
|
|
have b : tree.below A C₁ C₂ (tree.node a f), from
|
|
|
|
r,
|
|
|
|
have c : C₁ (tree.node a f), from
|
|
|
|
F₁ (tree.node a f) b,
|
|
|
|
prod.mk.{l₂ (max 1 l₂)} c b)
|
|
|
|
(have b : forest.below A C₁ C₂ (forest.nil A), from
|
|
|
|
unit.star.{max 1 l₂},
|
|
|
|
have c : C₂ (forest.nil A), from
|
|
|
|
F₂ (forest.nil A) b,
|
|
|
|
prod.mk.{l₂ (max 1 l₂)} c b)
|
|
|
|
(λ (t : tree A)
|
|
|
|
(f : forest A)
|
|
|
|
(rt : prod.{l₂ (max 1 l₂)} (C₁ t) (tree.below A C₁ C₂ t))
|
|
|
|
(rf : prod.{l₂ (max 1 l₂)} (C₂ f) (forest.below A C₁ C₂ f)),
|
|
|
|
have b : forest.below A C₁ C₂ (forest.cons t f), from
|
|
|
|
prod.mk.{(max 1 l₂) (max 1 l₂)} rt rf,
|
|
|
|
have c : C₂ (forest.cons t f), from
|
|
|
|
F₂ (forest.cons t f) b,
|
|
|
|
prod.mk.{l₂ (max 1 l₂)} c b),
|
|
|
|
pr₁ general
|
|
|
|
|
|
|
|
definition forest.brec_on.{l₁ l₂}
|
|
|
|
(A : Type.{l₁})
|
|
|
|
(C₁ : tree A → Type.{l₂})
|
|
|
|
(C₂ : forest A → Type.{l₂})
|
|
|
|
(f : forest A)
|
|
|
|
(F₁ : Π (t : tree A), tree.below A C₁ C₂ t → C₁ t)
|
|
|
|
(F₂ : Π (f : forest A), forest.below A C₁ C₂ f → C₂ f)
|
|
|
|
: C₂ f :=
|
|
|
|
have general : prod.{l₂ (max 1 l₂)} (C₂ f) (forest.below A C₁ C₂ f), from
|
|
|
|
@forest.rec_on
|
|
|
|
A
|
|
|
|
(λ (t' : tree A), prod.{l₂ (max 1 l₂)} (C₁ t') (tree.below A C₁ C₂ t'))
|
|
|
|
(λ (f' : forest A), prod.{l₂ (max 1 l₂)} (C₂ f') (forest.below A C₁ C₂ f'))
|
|
|
|
f
|
|
|
|
(λ (a : A) (f : forest A) (r : prod.{l₂ (max 1 l₂)} (C₂ f) (forest.below A C₁ C₂ f)),
|
|
|
|
have b : tree.below A C₁ C₂ (tree.node a f), from
|
|
|
|
r,
|
|
|
|
have c : C₁ (tree.node a f), from
|
|
|
|
F₁ (tree.node a f) b,
|
|
|
|
prod.mk.{l₂ (max 1 l₂)} c b)
|
|
|
|
(have b : forest.below A C₁ C₂ (forest.nil A), from
|
|
|
|
unit.star.{max 1 l₂},
|
|
|
|
have c : C₂ (forest.nil A), from
|
|
|
|
F₂ (forest.nil A) b,
|
|
|
|
prod.mk.{l₂ (max 1 l₂)} c b)
|
|
|
|
(λ (t : tree A)
|
|
|
|
(f : forest A)
|
|
|
|
(rt : prod.{l₂ (max 1 l₂)} (C₁ t) (tree.below A C₁ C₂ t))
|
|
|
|
(rf : prod.{l₂ (max 1 l₂)} (C₂ f) (forest.below A C₁ C₂ f)),
|
|
|
|
have b : forest.below A C₁ C₂ (forest.cons t f), from
|
|
|
|
prod.mk.{(max 1 l₂) (max 1 l₂)} rt rf,
|
|
|
|
have c : C₂ (forest.cons t f), from
|
|
|
|
F₂ (forest.cons t f) b,
|
|
|
|
prod.mk.{l₂ (max 1 l₂)} c b),
|
|
|
|
pr₁ general
|
2014-11-13 00:38:46 +00:00
|
|
|
end manual
|