2015-04-05 17:22:10 -07:00
|
|
|
open is_trunc
|
2015-04-23 15:27:56 -07:00
|
|
|
namespace hide
|
2015-04-05 17:22:10 -07:00
|
|
|
inductive trunc (n : trunc_index) (A : Type) : Type :=
|
|
|
|
tr {} : A → trunc n A
|
|
|
|
|
|
|
|
axiom is_trunc_tr (n : trunc_index) (A : Type) : is_trunc n (trunc n A)
|
|
|
|
|
|
|
|
attribute is_trunc_tr [instance]
|
|
|
|
|
|
|
|
namespace trunc
|
|
|
|
definition trunc_rec_on {n : trunc_index} {A : Type} {P : trunc n A → Type} (aa : trunc n A)
|
|
|
|
[Pt : Πaa, is_trunc n (P aa)] (H : Πa, P (tr a)) : P aa :=
|
|
|
|
trunc.rec_on aa H
|
|
|
|
|
|
|
|
definition trunc_functor1 {X Y : Type} (n : trunc_index) (f : X → Y) : trunc n X → trunc n Y :=
|
|
|
|
begin
|
|
|
|
intro xx,
|
|
|
|
apply (trunc_rec_on xx),
|
|
|
|
intro x,
|
|
|
|
exact (tr (f x))
|
|
|
|
end
|
|
|
|
|
|
|
|
definition trunc_functor2 {X Y : Type} (n : trunc_index) (f : X → Y) : trunc n X → trunc n Y :=
|
|
|
|
by intro xx; exact (trunc_rec_on xx (λx, (tr (f x))))
|
|
|
|
|
|
|
|
definition trunc_functor3 {X Y : Type} (n : trunc_index) (f : X → Y) : trunc n X → trunc n Y :=
|
|
|
|
by exact (λxx, trunc_rec_on xx (λx, tr (f x)))
|
|
|
|
|
|
|
|
definition trunc_functor4 {X Y : Type} (n : trunc_index) (f : X → Y) : trunc n X → trunc n Y :=
|
|
|
|
by intro xx; apply (trunc_rec_on xx); intro x; exact (tr (f x))
|
|
|
|
|
|
|
|
end trunc
|
2015-04-23 15:27:56 -07:00
|
|
|
end hide
|