523 lines
22 KiB
C++
523 lines
22 KiB
C++
|
/*
|
||
|
Copyright (c) 2014 Microsoft Corporation. All rights reserved.
|
||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
||
|
|
||
|
Author: Leonardo de Moura
|
||
|
*/
|
||
|
#include "util/interrupt.h"
|
||
|
#include "util/lbool.h"
|
||
|
#include "kernel/converter.h"
|
||
|
#include "kernel/max_sharing.h"
|
||
|
#include "kernel/expr_maps.h"
|
||
|
#include "kernel/instantiate.h"
|
||
|
#include "kernel/free_vars.h"
|
||
|
|
||
|
namespace lean {
|
||
|
bool converter::is_conv(expr const & t, expr const & s, context & c) {
|
||
|
delayed_justification j([]() { return justification(); });
|
||
|
return is_conv(t, s, c, j);
|
||
|
}
|
||
|
|
||
|
bool converter::is_def_eq(expr const & t, expr const & s, context & c) {
|
||
|
delayed_justification j([]() { return justification(); });
|
||
|
return is_def_eq(t, s, c, j);
|
||
|
}
|
||
|
|
||
|
/** \brief Do nothing converter */
|
||
|
struct dummy_converter : public converter {
|
||
|
virtual expr whnf(expr const & e, context &) { return e; }
|
||
|
virtual bool is_conv(expr const &, expr const &, context &, delayed_justification &) { return true; }
|
||
|
virtual bool is_def_eq(expr const &, expr const &, context &, delayed_justification &) { return true; }
|
||
|
};
|
||
|
|
||
|
std::unique_ptr<converter> mk_dummy_converter() {
|
||
|
return std::unique_ptr<converter>(new dummy_converter());
|
||
|
}
|
||
|
|
||
|
struct default_converter : public converter {
|
||
|
environment m_env;
|
||
|
optional<module_idx> m_module_idx;
|
||
|
bool m_memoize;
|
||
|
name_set m_extra_opaque;
|
||
|
max_sharing_fn m_sharing;
|
||
|
expr_map<expr> m_whnf_core_cache;
|
||
|
expr_map<expr> m_whnf_cache;
|
||
|
|
||
|
default_converter(environment const & env, optional<module_idx> mod_idx, bool memoize, name_set const & extra_opaque):
|
||
|
m_env(env), m_module_idx(mod_idx), m_memoize(memoize), m_extra_opaque(extra_opaque) {}
|
||
|
|
||
|
class extended_context : public extension_context {
|
||
|
default_converter & m_conv;
|
||
|
context & m_ctx;
|
||
|
public:
|
||
|
extended_context(default_converter & conv, context & ctx):m_conv(conv), m_ctx(ctx) {}
|
||
|
virtual environment const & env() const { return m_conv.m_env; }
|
||
|
virtual expr whnf(expr const & e) { return m_conv.whnf(e, m_ctx); }
|
||
|
virtual expr infer_type(expr const & e) { return m_ctx.infer_type(e); }
|
||
|
virtual name mk_fresh_name() { return m_ctx.mk_fresh_name(); }
|
||
|
virtual void add_cnstr(constraint const & c) { m_ctx.add_cnstr(c); }
|
||
|
};
|
||
|
|
||
|
bool check_memoized(expr const & e) const { return !m_memoize || m_sharing.already_processed(e); }
|
||
|
expr max_sharing(expr const & e) { return m_memoize ? m_sharing(e) : e; }
|
||
|
expr instantiate(expr const & e, unsigned n, expr const * s) { return max_sharing(lean::instantiate(e, n, s)); }
|
||
|
expr instantiate(expr const & e, expr const & s) { return max_sharing(lean::instantiate(e, s)); }
|
||
|
expr mk_app(expr const & f, unsigned num, expr const * args) { return max_sharing(lean::mk_app(f, num, args)); }
|
||
|
expr mk_app(expr const & f, expr const & a) { return max_sharing(lean::mk_app(f, a)); }
|
||
|
expr mk_rev_app(expr const & f, unsigned num, expr const * args) { return max_sharing(lean::mk_rev_app(f, num, args)); }
|
||
|
expr mk_app_vars(expr const & f, unsigned num) { return max_sharing(lean::mk_app_vars(f, num)); }
|
||
|
optional<expr> expand_macro(expr const & m, context & c) {
|
||
|
lean_assert(is_macro(m));
|
||
|
extended_context xctx(*this, c);
|
||
|
if (auto new_m = macro_def(m).expand(macro_num_args(m), macro_args(m), xctx))
|
||
|
return some_expr(max_sharing(*new_m));
|
||
|
else
|
||
|
return none_expr();
|
||
|
}
|
||
|
expr instantiate_params(expr const & e, param_names const & ps, levels const & ls) {
|
||
|
return max_sharing(lean::instantiate_params(e, ps, ls));
|
||
|
}
|
||
|
/** \brief Apply normalizer extensions to \c e. */
|
||
|
optional<expr> norm_ext(expr const & e, context & c) {
|
||
|
extended_context xctx(*this, c);
|
||
|
if (auto new_e = m_env.norm_ext()(e, xctx))
|
||
|
return some_expr(max_sharing(*new_e));
|
||
|
else
|
||
|
return none_expr();
|
||
|
}
|
||
|
|
||
|
/** \brief Weak head normal form core procedure. It does not perform delta reduction nor normalization extensions. */
|
||
|
expr whnf_core(expr const & e, context & c) {
|
||
|
check_system("whnf");
|
||
|
lean_assert(check_memoized(e));
|
||
|
|
||
|
// handle easy cases
|
||
|
switch (e.kind()) {
|
||
|
case expr_kind::Var: case expr_kind::Sort: case expr_kind::Meta: case expr_kind::Local:
|
||
|
case expr_kind::Lambda: case expr_kind::Pi: case expr_kind::Constant:
|
||
|
return e;
|
||
|
case expr_kind::Macro: case expr_kind::Let: case expr_kind::App:
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
// check cache
|
||
|
if (m_memoize) {
|
||
|
auto it = m_whnf_core_cache.find(e);
|
||
|
if (it != m_whnf_core_cache.end())
|
||
|
return it->second;
|
||
|
}
|
||
|
|
||
|
// do the actual work
|
||
|
expr r;
|
||
|
switch (e.kind()) {
|
||
|
case expr_kind::Var: case expr_kind::Sort: case expr_kind::Meta: case expr_kind::Local:
|
||
|
case expr_kind::Lambda: case expr_kind::Pi: case expr_kind::Constant:
|
||
|
lean_unreachable(); // LCOV_EXCL_LINE
|
||
|
case expr_kind::Macro:
|
||
|
if (auto m = expand_macro(e, c))
|
||
|
r = whnf_core(*m, c);
|
||
|
else
|
||
|
r = e;
|
||
|
break;
|
||
|
case expr_kind::Let:
|
||
|
r = whnf_core(instantiate(let_body(e), let_value(e)), c);
|
||
|
break;
|
||
|
case expr_kind::App: {
|
||
|
buffer<expr> args;
|
||
|
expr const * it = &e;
|
||
|
while (is_app(*it)) {
|
||
|
args.push_back(app_arg(*it));
|
||
|
it = &(app_fn(*it));
|
||
|
}
|
||
|
expr f = whnf_core(*it, c);
|
||
|
if (is_lambda(f)) {
|
||
|
unsigned m = 1;
|
||
|
unsigned num_args = args.size();
|
||
|
while (is_lambda(binder_body(f)) && m < num_args) {
|
||
|
f = binder_body(f);
|
||
|
m++;
|
||
|
}
|
||
|
lean_assert(m <= num_args);
|
||
|
r = whnf_core(mk_rev_app(instantiate(binder_body(f), m, args.data() + (num_args - m)), num_args - m, args.data()), c);
|
||
|
} else {
|
||
|
r = is_eqp(f, *it) ? e : mk_rev_app(f, args.size(), args.data());
|
||
|
}
|
||
|
break;
|
||
|
}}
|
||
|
|
||
|
if (m_memoize)
|
||
|
m_whnf_core_cache.insert(mk_pair(e, r));
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
\brief Predicate for deciding whether \c d is an opaque definition or not.
|
||
|
|
||
|
Here is the basic idea:
|
||
|
|
||
|
1) Each definition has an opaque flag. This flag cannot be modified after a definition is added to the environment.
|
||
|
The opaque flag affects the convertability check. The idea is to minimize the number of delta-reduction steps.
|
||
|
We also believe it increases the modularity of Lean developments by minimizing the dependency on how things are defined.
|
||
|
We should view non-opaque definitions as "inline definitions" used in programming languages such as C++.
|
||
|
|
||
|
2) Whenever type checking an expression, the user can provide an additional set of definition names (m_extra_opaque) that
|
||
|
should be considered opaque. Note that, if \c t type checks when using an extra_opaque set S, then t also type checks
|
||
|
(modulo resource constraints) with the empty set. Again, the purpose of extra_opaque is to mimimize the number
|
||
|
of delta-reduction steps.
|
||
|
|
||
|
3) To be able to prove theorems about an opaque definition, we treat an opaque definition D in a module M as
|
||
|
transparent when we are type checking another definition/theorem D' also in M. This rule only applies if
|
||
|
D is not a theorem, nor D is in the set m_extra_opaque. To implement this feature, this class has a field
|
||
|
m_module_idx that is not none when this rule should be applied.
|
||
|
*/
|
||
|
bool is_opaque(definition const & d) const {
|
||
|
lean_assert(d.is_definition());
|
||
|
if (d.is_theorem()) return true; // theorems are always opaque
|
||
|
if (m_extra_opaque.contains(d.get_name())) return true; // extra_opaque set overrides opaque flag
|
||
|
if (!d.is_opaque()) return false; // d is a transparent definition
|
||
|
if (m_module_idx && d.get_module_idx() == *m_module_idx) return false; // the opaque definitions in module_idx are considered transparent
|
||
|
return true; // d is opaque
|
||
|
}
|
||
|
|
||
|
/** \brief Expand \c e if it is non-opaque constant with weight >= w */
|
||
|
expr unfold_name_core(expr e, unsigned w) {
|
||
|
if (is_constant(e)) {
|
||
|
if (auto d = m_env.find(const_name(e))) {
|
||
|
if (d->is_definition() && !is_opaque(*d) && d->get_weight() >= w)
|
||
|
return unfold_name_core(instantiate_params(d->get_value(), d->get_params(), const_level_params(e)), w);
|
||
|
}
|
||
|
}
|
||
|
return e;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
\brief Expand constants and application where the function is a constant.
|
||
|
|
||
|
The unfolding is only performend if the constant corresponds to
|
||
|
a non-opaque definition with weight >= w.
|
||
|
*/
|
||
|
expr unfold_names(expr const & e, unsigned w) {
|
||
|
if (is_app(e)) {
|
||
|
expr const * it = &e;
|
||
|
while (is_app(*it)) {
|
||
|
it = &(app_fn(*it));
|
||
|
}
|
||
|
expr f = unfold_name_core(*it, w);
|
||
|
if (is_eqp(f, *it)) {
|
||
|
return e;
|
||
|
} else {
|
||
|
buffer<expr> args;
|
||
|
expr const * it = &e;
|
||
|
while (is_app(*it)) {
|
||
|
args.push_back(app_arg(*it));
|
||
|
it = &(app_fn(*it));
|
||
|
}
|
||
|
return mk_rev_app(f, args.size(), args.data());
|
||
|
}
|
||
|
} else {
|
||
|
return unfold_name_core(e, w);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/** \brief Auxiliary method for \c is_delta */
|
||
|
optional<definition> is_delta_core(expr const & e) {
|
||
|
if (is_constant(e)) {
|
||
|
if (auto d = m_env.find(const_name(e)))
|
||
|
if (d->is_definition() && !is_opaque(*d))
|
||
|
return d;
|
||
|
}
|
||
|
return none_definition();
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
\brief Return some definition \c d iff \c e is a target for delta-reduction, and the given definition is the one
|
||
|
to be expanded.
|
||
|
*/
|
||
|
optional<definition> is_delta(expr const & e) {
|
||
|
if (is_app(e)) {
|
||
|
expr const * it = &e;
|
||
|
while (is_app(*it)) {
|
||
|
it = &(app_fn(*it));
|
||
|
}
|
||
|
return is_delta_core(*it);
|
||
|
} else {
|
||
|
return is_delta_core(e);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
\brief Weak head normal form core procedure that perform delta reduction for non-opaque constants with
|
||
|
weight greater than or equal to \c w.
|
||
|
|
||
|
This method is based on <tt>whnf_core(expr const &)</tt> and \c unfold_names.
|
||
|
|
||
|
\remark This method does not use normalization extensions attached in the environment.
|
||
|
*/
|
||
|
expr whnf_core(expr e, unsigned w, context & c) {
|
||
|
while (true) {
|
||
|
expr new_e = unfold_names(whnf_core(e, c), w);
|
||
|
if (is_eqp(e, new_e))
|
||
|
return e;
|
||
|
e = new_e;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/** \brief Put expression \c t in weak head normal form */
|
||
|
virtual expr whnf(expr const & e_prime, context & c) {
|
||
|
expr e = e_prime;
|
||
|
// check cache
|
||
|
if (m_memoize) {
|
||
|
e = max_sharing(e);
|
||
|
auto it = m_whnf_cache.find(e);
|
||
|
if (it != m_whnf_cache.end())
|
||
|
return it->second;
|
||
|
}
|
||
|
|
||
|
expr t = e;
|
||
|
while (true) {
|
||
|
expr t1 = whnf_core(t, 0, c);
|
||
|
auto new_t = norm_ext(t1, c);
|
||
|
if (new_t) {
|
||
|
t = *new_t;
|
||
|
} else {
|
||
|
if (m_memoize)
|
||
|
m_whnf_cache.insert(mk_pair(e, t1));
|
||
|
return t1;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/** \brief Eta-expand \c s and check if it is definitionally equal to \c t. */
|
||
|
bool try_eta(expr const & t, expr const & s, context & c, delayed_justification & jst) {
|
||
|
lean_assert(is_lambda(t));
|
||
|
lean_assert(!is_lambda(s));
|
||
|
expr t_s = whnf(c.infer_type(s), c);
|
||
|
if (is_pi(t_s)) {
|
||
|
// new_s := lambda x : domain(t_s), s x
|
||
|
expr new_s = mk_lambda(c.mk_fresh_name(), binder_domain(t_s), mk_app(lift_free_vars(s, 1), mk_var(0)));
|
||
|
return is_def_eq_core(t, new_s, c, jst);
|
||
|
} else {
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
\brief Given lambda/Pi expressions \c t and \c s, return true iff \c t is convertible to \c s.
|
||
|
|
||
|
The argument \c def_eq is used to decide whether the body of the binder is checked for
|
||
|
definitional equality or convertability.
|
||
|
|
||
|
If t and s are lambda expressions, then then t is convertible to s
|
||
|
iff
|
||
|
domain(t) is definitionally equal to domain(s)
|
||
|
and
|
||
|
body(t) is definitionally equal to body(s)
|
||
|
|
||
|
For Pi expressions, it is slighly different.
|
||
|
If t and s are Pi expressions, then then t is convertible to s
|
||
|
iff
|
||
|
domain(t) is definitionally equal to domain(s)
|
||
|
and
|
||
|
body(t) is convertible to body(s)
|
||
|
*/
|
||
|
bool is_conv_binder(expr t, expr s, bool def_eq, context & c, delayed_justification & jst) {
|
||
|
lean_assert(t.kind() == s.kind());
|
||
|
lean_assert(is_binder(t));
|
||
|
expr_kind k = t.kind();
|
||
|
buffer<expr> subst;
|
||
|
do {
|
||
|
expr var_t_type = instantiate(binder_domain(t), subst.size(), subst.data());
|
||
|
expr var_s_type = instantiate(binder_domain(s), subst.size(), subst.data());
|
||
|
if (!is_def_eq_core(var_t_type, var_s_type, c, jst))
|
||
|
return false;
|
||
|
subst.push_back(mk_local(c.mk_fresh_name() + binder_name(s), var_s_type));
|
||
|
t = binder_body(t);
|
||
|
s = binder_body(s);
|
||
|
} while (t.kind() == k && s.kind() == k);
|
||
|
return is_conv(instantiate(t, subst.size(), subst.data()), instantiate(s, subst.size(), subst.data()), def_eq, c, jst);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
\brief This is an auxiliary method for is_conv. It handles the "easy cases".
|
||
|
|
||
|
If \c def_eq is true, then it checks for definitional equality.
|
||
|
*/
|
||
|
lbool quick_is_conv(expr const & t, expr const & s, bool def_eq, context & c, delayed_justification & jst) {
|
||
|
if (t == s)
|
||
|
return l_true; // t and s are structurally equal
|
||
|
if (is_meta(t) || is_meta(s)) {
|
||
|
// if t or s is a metavariable (or the application of a metavariable), then add constraint
|
||
|
if (def_eq)
|
||
|
c.add_cnstr(mk_eq_cnstr(t, s, jst.get()));
|
||
|
else
|
||
|
c.add_cnstr(mk_conv_cnstr(t, s, jst.get()));
|
||
|
return l_true;
|
||
|
}
|
||
|
if (t.kind() == s.kind()) {
|
||
|
switch (t.kind()) {
|
||
|
case expr_kind::Lambda:
|
||
|
return to_lbool(is_conv_binder(t, s, true, c, jst));
|
||
|
case expr_kind::Pi:
|
||
|
return to_lbool(is_conv_binder(t, s, def_eq, c, jst));
|
||
|
case expr_kind::Sort:
|
||
|
// t and s are Sorts
|
||
|
if (is_trivial(sort_level(t), sort_level(s)) && (!def_eq || is_trivial(sort_level(s), sort_level(t))))
|
||
|
return l_true;
|
||
|
c.add_cnstr(mk_level_cnstr(sort_level(t), sort_level(s), jst.get()));
|
||
|
if (def_eq)
|
||
|
c.add_cnstr(mk_level_cnstr(sort_level(s), sort_level(t), jst.get()));
|
||
|
return l_true;
|
||
|
case expr_kind::Meta:
|
||
|
lean_unreachable(); // LCOV_EXCL_LINE
|
||
|
case expr_kind::Var: case expr_kind::Local: case expr_kind::App:
|
||
|
case expr_kind::Constant: case expr_kind::Macro: case expr_kind::Let:
|
||
|
// We do not handle these cases in this method.
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
return l_undef; // This is not an "easy case"
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
\brief Return true if arguments of \c t are definitionally equal to arguments of \c s.
|
||
|
Constraint generation is disabled when performing this test.
|
||
|
This method is used to implement an optimization in the method \c is_conv.
|
||
|
*/
|
||
|
bool is_def_eq_args(expr t, expr s, context & c, delayed_justification & jst) {
|
||
|
context::disable_cnstrs_scope scope(c);
|
||
|
try {
|
||
|
while (is_app(t) && is_app(s)) {
|
||
|
if (!is_def_eq_core(app_arg(t), app_arg(s), c, jst))
|
||
|
return false;
|
||
|
t = app_fn(t);
|
||
|
s = app_fn(s);
|
||
|
}
|
||
|
return !is_app(t) && !is_app(s);
|
||
|
} catch (add_cnstr_exception &) {
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
\brief If def_eq is false, then return true iff t is convertible to s.
|
||
|
If def_eq is true, then return true iff t is definitionally equal to s.
|
||
|
*/
|
||
|
bool is_conv(expr const & t, expr const & s, bool def_eq, context & c, delayed_justification & jst) {
|
||
|
check_system("is_convertible");
|
||
|
lbool r = quick_is_conv(t, s, def_eq, c, jst);
|
||
|
if (r != l_undef) return r == l_true;
|
||
|
|
||
|
// apply whnf (without using delta-reduction or normalizer extensions)
|
||
|
expr t_n = whnf_core(t, c);
|
||
|
expr s_n = whnf_core(s, c);
|
||
|
if (!is_eqp(t_n, t) || !is_eqp(s_n, s)) {
|
||
|
r = quick_is_conv(t_n, s_n, def_eq, c, jst);
|
||
|
if (r != l_undef) return r == l_true;
|
||
|
}
|
||
|
|
||
|
// lazy delta-reduction and then normalizer extensions
|
||
|
while (true) {
|
||
|
// first, keep applying lazy delta-reduction while applicable
|
||
|
while (true) {
|
||
|
auto d_t = is_delta(t_n);
|
||
|
auto d_s = is_delta(s_n);
|
||
|
if (!d_t && !d_s) {
|
||
|
break;
|
||
|
} else if (d_t && !d_s) {
|
||
|
t_n = whnf_core(unfold_names(t_n, 0), c);
|
||
|
} else if (!d_t && d_s) {
|
||
|
s_n = whnf_core(unfold_names(s_n, 0), c);
|
||
|
} else if (d_t->get_weight() > d_s->get_weight()) {
|
||
|
t_n = whnf_core(unfold_names(t_n, d_s->get_weight() + 1), c);
|
||
|
} else if (d_t->get_weight() < d_s->get_weight()) {
|
||
|
s_n = whnf_core(unfold_names(s_n, d_t->get_weight() + 1), c);
|
||
|
} else {
|
||
|
lean_assert(d_t && d_s && d_t->get_weight() == d_s->get_weight());
|
||
|
// If t_n and s_n are both applications of the same (non-opaque) definition,
|
||
|
// then we try to check if their arguments are definitionally equal.
|
||
|
// If they are, then t_n and s_n must be definitionally equal, and we can
|
||
|
// skip the delta-reduction step.
|
||
|
if (is_app(t_n) && is_app(s_n) &&
|
||
|
is_eqp(*d_t, *d_s) && // same definition
|
||
|
!is_opaque(*d_t) && // if d_t is opaque, we don't need to try this optimization
|
||
|
d_t->use_conv_opt() && // the flag use_conv_opt() can be used to disable this optimization
|
||
|
is_def_eq_args(t_n, s_n, c, jst)) {
|
||
|
return true;
|
||
|
}
|
||
|
t_n = whnf_core(unfold_names(t_n, d_t->get_weight() - 1), c);
|
||
|
s_n = whnf_core(unfold_names(s_n, d_s->get_weight() - 1), c);
|
||
|
}
|
||
|
r = quick_is_conv(t_n, s_n, def_eq, c, jst);
|
||
|
if (r != l_undef) return r == l_true;
|
||
|
}
|
||
|
// try normalizer extensions
|
||
|
auto new_t_n = norm_ext(t_n, c);
|
||
|
auto new_s_n = norm_ext(s_n, c);
|
||
|
if (!new_t_n && !new_s_n)
|
||
|
break; // t_n and s_n are in weak head normal form
|
||
|
if (new_t_n)
|
||
|
t_n = whnf_core(*new_t_n, c);
|
||
|
if (new_s_n)
|
||
|
s_n = whnf_core(*new_s_n, c);
|
||
|
r = quick_is_conv(t_n, s_n, def_eq, c, jst);
|
||
|
if (r != l_undef) return r == l_true;
|
||
|
}
|
||
|
|
||
|
// At this point, t_n and s_n are in weak head normal form (modulo meta-variables)
|
||
|
|
||
|
if (m_env.eta()) {
|
||
|
lean_assert(!is_lambda(t_n) || !is_lambda(s_n));
|
||
|
// Eta-reduction support
|
||
|
if ((is_lambda(t_n) && try_eta(t_n, s_n, c, jst)) ||
|
||
|
(is_lambda(s_n) && try_eta(s_n, t_n, c, jst)))
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
if (is_app(t_n) && is_app(s_n)) {
|
||
|
expr it1 = t_n;
|
||
|
expr it2 = s_n;
|
||
|
bool ok = true;
|
||
|
do {
|
||
|
if (!is_def_eq_core(app_arg(it1), app_arg(it2), c, jst)) {
|
||
|
ok = false;
|
||
|
break;
|
||
|
}
|
||
|
it1 = app_fn(it1);
|
||
|
it2 = app_fn(it2);
|
||
|
} while (is_app(it1) && is_app(it2));
|
||
|
if (ok && is_def_eq_core(it1, it2, c, jst))
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
if (m_env.proof_irrel()) {
|
||
|
// Proof irrelevance support
|
||
|
expr t_type = c.infer_type(t);
|
||
|
return is_prop(t_type, c) && is_def_eq_core(t_type, c.infer_type(s), c, jst);
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
bool is_prop(expr const & e, context & c) {
|
||
|
return whnf(c.infer_type(e), c) == Bool;
|
||
|
}
|
||
|
|
||
|
bool is_def_eq_core(expr const & t, expr const & s, context & c, delayed_justification & j) {
|
||
|
return is_conv(t, s, true, c, j);
|
||
|
}
|
||
|
|
||
|
virtual bool is_conv(expr const & t, expr const & s, context & c, delayed_justification & j) {
|
||
|
return is_conv(max_sharing(t), max_sharing(s), false, c, j);
|
||
|
}
|
||
|
|
||
|
virtual bool is_def_eq(expr const & t, expr const & s, context & c, delayed_justification & j) {
|
||
|
return is_def_eq_core(max_sharing(t), max_sharing(s), c, j);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
std::unique_ptr<converter> mk_default_converter(environment const & env, optional<module_idx> mod_idx,
|
||
|
bool memoize, name_set const & extra_opaque) {
|
||
|
return std::unique_ptr<converter>(new default_converter(env, mod_idx, memoize, extra_opaque));
|
||
|
}
|
||
|
}
|