lean2/library/logic/examples/propositional/soundness.lean

166 lines
6.2 KiB
Text
Raw Normal View History

/-
Copyright (c) 2015 Microsoft Corporation. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Author: Leonardo de Moura
Define propositional calculus, valuation, provability, validity, prove soundness.
This file is based on Floris van Doorn Coq files.
-/
import data.nat data.list
open nat bool list decidable
definition PropVar [reducible] := nat
inductive PropF :=
| Var : PropVar → PropF
| Bot : PropF
| Conj : PropF → PropF → PropF
| Disj : PropF → PropF → PropF
| Impl : PropF → PropF → PropF
namespace PropF
notation `#`:max P:max := Var P
notation A B := Disj A B
notation A ∧ B := Conj A B
infixr `⇒`:27 := Impl
notation `⊥` := Bot
definition Neg A := A ⇒ ⊥
notation ~ A := Neg A
definition Top := ~⊥
notation `` := Top
definition BiImpl A B := A ⇒ B ∧ B ⇒ A
infixr `⇔`:27 := BiImpl
definition valuation := PropVar → bool
definition TrueQ (v : valuation) : PropF → bool
| TrueQ (# P) := v P
| TrueQ ⊥ := ff
| TrueQ (A B) := TrueQ A || TrueQ B
| TrueQ (A ∧ B) := TrueQ A && TrueQ B
| TrueQ (A ⇒ B) := bnot (TrueQ A) || TrueQ B
definition is_true [reducible] (b : bool) := b = tt
-- the valuation v satisfies a list of PropF, if forall (A : PropF) in Γ,
-- (TrueQ v A) is tt (the Boolean true)
definition Satisfies v Γ := ∀ A, A ∈ Γ → is_true (TrueQ v A)
definition Models Γ A := ∀ v, Satisfies v Γ → is_true (TrueQ v A)
infix `⊨`:80 := Models
definition Valid p := [] ⊨ p
reserve infix `⊢`:26
/- Provability -/
inductive Nc : list PropF → PropF → Prop :=
infix ⊢ := Nc
| Nax : ∀ Γ A, A ∈ Γ → Γ ⊢ A
| ImpI : ∀ Γ A B, A::Γ ⊢ B → Γ ⊢ A ⇒ B
| ImpE : ∀ Γ A B, Γ ⊢ A ⇒ B → Γ ⊢ A → Γ ⊢ B
| BotC : ∀ Γ A, (~A)::Γ ⊢ ⊥ → Γ ⊢ A
| AndI : ∀ Γ A B, Γ ⊢ A → Γ ⊢ B → Γ ⊢ A ∧ B
| AndE₁ : ∀ Γ A B, Γ ⊢ A ∧ B → Γ ⊢ A
| AndE₂ : ∀ Γ A B, Γ ⊢ A ∧ B → Γ ⊢ B
| OrI₁ : ∀ Γ A B, Γ ⊢ A → Γ ⊢ A B
| OrI₂ : ∀ Γ A B, Γ ⊢ B → Γ ⊢ A B
| OrE : ∀ Γ A B C, Γ ⊢ A B → A::Γ ⊢ C → B::Γ ⊢ C → Γ ⊢ C
infix ⊢ := Nc
definition Provable A := [] ⊢ A
definition Prop_Soundness := ∀ A, Provable A → Valid A
definition Prop_Completeness := ∀ A, Valid A → Provable A
open Nc
lemma weakening2 : ∀ Γ A, Γ ⊢ A → ∀ Δ, Γ ⊆ Δ → Δ ⊢ A :=
λ Γ A H, Nc.induction_on H
(λ Γ A Hin Δ Hs, !Nax (Hs A Hin))
(λ Γ A B H w Δ Hs, !ImpI (w _ (cons_sub_cons A Hs)))
(λ Γ A B H₁ H₂ w₁ w₂ Δ Hs, !ImpE (w₁ _ Hs) (w₂ _ Hs))
(λ Γ A H w Δ Hs, !BotC (w _ (cons_sub_cons (~A) Hs)))
(λ Γ A B H₁ H₂ w₁ w₂ Δ Hs, !AndI (w₁ _ Hs) (w₂ _ Hs))
(λ Γ A B H w Δ Hs, !AndE₁ (w _ Hs))
(λ Γ A B H w Δ Hs, !AndE₂ (w _ Hs))
(λ Γ A B H w Δ Hs, !OrI₁ (w _ Hs))
(λ Γ A B H w Δ Hs, !OrI₂ (w _ Hs))
(λ Γ A B C H₁ H₂ H₃ w₁ w₂ w₃ Δ Hs, !OrE (w₁ _ Hs) (w₂ _ (cons_sub_cons A Hs)) (w₃ _ (cons_sub_cons B Hs)))
lemma weakening : ∀ Γ Δ A, Γ ⊢ A → Γ++Δ ⊢ A :=
λ Γ Δ A H, weakening2 Γ A H (Γ++Δ) (sub_append_left Γ Δ)
lemma deduction : ∀ Γ A B, Γ ⊢ A ⇒ B → A::Γ ⊢ B :=
λ Γ A B H, ImpE _ A _ (!weakening2 H _ (sub_cons A Γ)) (!Nax (mem_cons A Γ))
lemma prov_impl : ∀ A B, Provable (A ⇒ B) → ∀ Γ, Γ ⊢ A → Γ ⊢ B :=
λ A B Hp Γ Ha,
have wHp : Γ ⊢ (A ⇒ B), from !weakening Hp,
!ImpE wHp Ha
lemma Satisfies_cons : ∀ {A Γ v}, Satisfies v Γ → is_true (TrueQ v A) → Satisfies v (A::Γ) :=
λ A Γ v s t B BinAG,
or.elim BinAG
(λ e : B = A, by rewrite e; exact t)
(λ i : B ∈ Γ, s _ i)
theorem Soundness_general : ∀ A Γ, Γ ⊢ A → Γ ⊨ A :=
λ A Γ H, Nc.induction_on H
(λ Γ A Hin v s, (s _ Hin))
(λ Γ A B H r v s,
by_cases
(λ t : is_true (TrueQ v A),
have aux₁ : Satisfies v (A::Γ), from Satisfies_cons s t,
have aux₂ : is_true (TrueQ v B), from r v aux₁,
bor_inr aux₂)
(λ f : ¬ is_true (TrueQ v A),
have aux : bnot (TrueQ v A) = tt, by rewrite (eq_ff_of_ne_tt f),
bor_inl aux))
(λ Γ A B H₁ H₂ r₁ r₂ v s,
have aux₁ : bnot (TrueQ v A) || TrueQ v B = tt, from r₁ v s,
have aux₂ : TrueQ v A = tt, from r₂ v s,
by rewrite [aux₂ at aux₁, bnot_true at aux₁, ff_bor at aux₁]; exact aux₁)
(λ Γ A H r v s, by_contradiction
(λ n : TrueQ v A ≠ tt,
have aux₁ : TrueQ v A = ff, from eq_ff_of_ne_tt n,
have aux₂ : TrueQ v (~A) = tt, begin change (bnot (TrueQ v A) || ff = tt), rewrite aux₁ end,
have aux₃ : Satisfies v ((~A)::Γ), from Satisfies_cons s aux₂,
have aux₄ : TrueQ v ⊥ = tt, from r v aux₃,
absurd aux₄ ff_ne_tt))
(λ Γ A B H₁ H₂ r₁ r₂ v s,
have aux₁ : TrueQ v A = tt, from r₁ v s,
have aux₂ : TrueQ v B = tt, from r₂ v s,
band_intro aux₁ aux₂)
(λ Γ A B H r v s,
have aux : TrueQ v (A ∧ B) = tt, from r v s,
band_elim_left aux)
(λ Γ A B H r v s,
have aux : TrueQ v (A ∧ B) = tt, from r v s,
band_elim_right aux)
(λ Γ A B H r v s,
have aux : TrueQ v A = tt, from r v s,
bor_inl aux)
(λ Γ A B H r v s,
have aux : TrueQ v B = tt, from r v s,
bor_inr aux)
(λ Γ A B C H₁ H₂ H₃ r₁ r₂ r₃ v s,
have aux : TrueQ v A || TrueQ v B = tt, from r₁ v s,
or.elim (or_of_bor_eq aux)
(λ At : TrueQ v A = tt,
have aux : Satisfies v (A::Γ), from Satisfies_cons s At,
r₂ v aux)
(λ Bt : TrueQ v B = tt,
have aux : Satisfies v (B::Γ), from Satisfies_cons s Bt,
r₃ v aux))
theorem Soundness : Prop_Soundness :=
λ A, Soundness_general A []
end PropF