86 lines
2.8 KiB
Text
86 lines
2.8 KiB
Text
|
/-
|
|||
|
Copyright (c) 2015 Daniel Selsam. All rights reserved.
|
|||
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|||
|
Author: Daniel Selsam
|
|||
|
-/
|
|||
|
prelude
|
|||
|
import init.logic
|
|||
|
|
|||
|
namespace simplifier
|
|||
|
|
|||
|
namespace unit_simp
|
|||
|
open eq.ops
|
|||
|
|
|||
|
-- TODO(dhs): prove these lemmas elsewhere and only gather the
|
|||
|
-- [simp] attributes here
|
|||
|
|
|||
|
variables {A B C : Prop}
|
|||
|
|
|||
|
lemma and_imp [simp] : (A ∧ B → C) ↔ (A → B → C) :=
|
|||
|
iff.intro (assume H a b, H (and.intro a b))
|
|||
|
(assume H ab, H (and.left ab) (and.right ab))
|
|||
|
|
|||
|
lemma or_imp [simp] : (A ∨ B → C) ↔ ((A → C) ∧ (B → C)) :=
|
|||
|
iff.intro (assume H, and.intro (assume a, H (or.inl a))
|
|||
|
(assume b, H (or.inr b)))
|
|||
|
(assume H ab, and.rec_on H
|
|||
|
(assume Hac Hbc, or.rec_on ab Hac Hbc))
|
|||
|
|
|||
|
lemma imp_and [simp] : (A → B ∧ C) ↔ ((A → B) ∧ (A → C)) :=
|
|||
|
iff.intro (assume H, and.intro (assume a, and.left (H a))
|
|||
|
(assume a, and.right (H a)))
|
|||
|
(assume H a, and.rec_on H
|
|||
|
(assume Hab Hac, and.intro (Hab a) (Hac a)))
|
|||
|
|
|||
|
-- TODO(dhs, leo): do we want to pre-process away the [iff]s?
|
|||
|
/-
|
|||
|
lemma iff_and_imp [simp] : ((A ↔ B) → C) ↔ (((A → B) ∧ (B → A)) → C) :=
|
|||
|
iff.intro (assume H1 H2, and.rec_on H2 (assume ab ba, H1 (iff.intro ab ba)))
|
|||
|
(assume H1 H2, H1 (and.intro (iff.elim_left H2) (iff.elim_right H2)))
|
|||
|
-/
|
|||
|
|
|||
|
lemma a_of_a [simp] : (A → A) ↔ true :=
|
|||
|
iff.intro (assume H, trivial)
|
|||
|
(assume t a, a)
|
|||
|
|
|||
|
lemma not_true_of_false [simp] : ¬ true ↔ false :=
|
|||
|
iff.intro (assume H, H trivial)
|
|||
|
(assume f, false.rec (¬ true) f)
|
|||
|
|
|||
|
lemma imp_true [simp] : (A → true) ↔ true :=
|
|||
|
iff.intro (assume H, trivial)
|
|||
|
(assume t a, trivial)
|
|||
|
|
|||
|
lemma true_imp [simp] : (true → A) ↔ A :=
|
|||
|
iff.intro (assume H, H trivial)
|
|||
|
(assume a t, a)
|
|||
|
|
|||
|
lemma fold_not [simp] : (A → false) ↔ ¬ A :=
|
|||
|
iff.intro id id
|
|||
|
|
|||
|
lemma false_imp [simp] : (false → A) ↔ true :=
|
|||
|
iff.intro (assume H, trivial)
|
|||
|
(assume t f, false.rec A f)
|
|||
|
|
|||
|
lemma ite_and [simp] [A_dec : decidable A] : ite A B C ↔ ((A → B) ∧ (¬ A → C)) :=
|
|||
|
iff.intro (assume H, and.intro (assume a, implies_of_if_pos H a)
|
|||
|
(assume a, implies_of_if_neg H a))
|
|||
|
(assume H, and.rec_on H
|
|||
|
(assume Hab Hnac, decidable.rec_on A_dec
|
|||
|
(assume a,
|
|||
|
assert rw : @decidable.inl A a = A_dec, from
|
|||
|
subsingleton.rec_on (subsingleton_decidable A)
|
|||
|
(assume H, H (@decidable.inl A a) A_dec),
|
|||
|
by rewrite [rw, if_pos a] ; exact Hab a)
|
|||
|
(assume na,
|
|||
|
assert rw : @decidable.inr A na = A_dec, from
|
|||
|
subsingleton.rec_on (subsingleton_decidable A)
|
|||
|
(assume H, H (@decidable.inr A na) A_dec),
|
|||
|
by rewrite [rw, if_neg na] ; exact Hnac na)))
|
|||
|
|
|||
|
end unit_simp
|
|||
|
|
|||
|
|
|||
|
|
|||
|
end simplifier
|