2015-09-13 01:45:47 +00:00
|
|
|
|
/-
|
|
|
|
|
Copyright (c) 2015 Jeremy Avigad. All rights reserved.
|
|
|
|
|
Released under Apache 2.0 license as described in the file LICENSE.
|
|
|
|
|
Author: Jeremy Avigad
|
|
|
|
|
|
|
|
|
|
Metric spaces.
|
|
|
|
|
-/
|
|
|
|
|
import data.real.division
|
|
|
|
|
open real eq.ops classical
|
|
|
|
|
|
|
|
|
|
structure metric_space [class] (M : Type) : Type :=
|
|
|
|
|
(dist : M → M → ℝ)
|
|
|
|
|
(dist_self : ∀ x : M, dist x x = 0)
|
|
|
|
|
(eq_of_dist_eq_zero : ∀ {x y : M}, dist x y = 0 → x = y)
|
|
|
|
|
(dist_comm : ∀ x y : M, dist x y = dist y x)
|
|
|
|
|
(dist_triangle : ∀ x y z : M, dist x y + dist y z ≥ dist x z)
|
|
|
|
|
|
|
|
|
|
namespace metric_space
|
|
|
|
|
|
|
|
|
|
section metric_space_M
|
|
|
|
|
variables {M : Type} [strucM : metric_space M]
|
|
|
|
|
include strucM
|
|
|
|
|
|
|
|
|
|
proposition dist_eq_zero_iff (x y : M) : dist x y = 0 ↔ x = y :=
|
|
|
|
|
iff.intro eq_of_dist_eq_zero (suppose x = y, this ▸ !dist_self)
|
|
|
|
|
|
|
|
|
|
proposition dist_nonneg (x y : M) : 0 ≤ dist x y :=
|
|
|
|
|
have dist x y + dist y x ≥ 0, by rewrite -(dist_self x); apply dist_triangle,
|
|
|
|
|
have 2 * dist x y ≥ 0, using this,
|
|
|
|
|
by rewrite [-real.one_add_one, right_distrib, +one_mul, dist_comm at {2}]; apply this,
|
|
|
|
|
nonneg_of_mul_nonneg_left this two_pos
|
|
|
|
|
|
|
|
|
|
proposition dist_pos_of_ne {x y : M} (H : x ≠ y) : dist x y > 0 :=
|
|
|
|
|
lt_of_le_of_ne !dist_nonneg (suppose 0 = dist x y, H (iff.mp !dist_eq_zero_iff this⁻¹))
|
|
|
|
|
|
|
|
|
|
proposition eq_of_forall_dist_le {x y : M} (H : ∀ ε, ε > 0 → dist x y ≤ ε) : x = y :=
|
|
|
|
|
eq_of_dist_eq_zero (eq_zero_of_nonneg_of_forall_le !dist_nonneg H)
|
|
|
|
|
|
|
|
|
|
open nat
|
|
|
|
|
|
|
|
|
|
definition converges_to_seq (X : ℕ → M) (y : M) : Prop :=
|
|
|
|
|
∀ ⦃ε : ℝ⦄, ε > 0 → ∃ N : ℕ, ∀ {n}, n ≥ N → dist (X n) y < ε
|
|
|
|
|
|
|
|
|
|
-- the same, with ≤ in place of <; easier to prove, harder to use
|
|
|
|
|
definition converges_to_seq.intro {X : ℕ → M} {y : M}
|
|
|
|
|
(H : ∀ ⦃ε : ℝ⦄, ε > 0 → ∃ N : ℕ, ∀ {n}, n ≥ N → dist (X n) y ≤ ε) :
|
|
|
|
|
converges_to_seq X y :=
|
|
|
|
|
take ε, assume epos : ε > 0,
|
|
|
|
|
have e2pos : ε / 2 > 0, from div_pos_of_pos_of_pos `ε > 0` two_pos,
|
|
|
|
|
obtain N HN, from H e2pos,
|
|
|
|
|
exists.intro N
|
|
|
|
|
(take n, suppose n ≥ N,
|
|
|
|
|
calc
|
|
|
|
|
dist (X n) y ≤ ε / 2 : HN _ `n ≥ N`
|
|
|
|
|
... < ε : div_two_lt_of_pos epos)
|
|
|
|
|
|
|
|
|
|
notation X `⟶` y `in` `ℕ` := converges_to_seq X y
|
|
|
|
|
|
|
|
|
|
definition converges_seq [class] (X : ℕ → M) : Prop := ∃ y, X ⟶ y in ℕ
|
|
|
|
|
|
|
|
|
|
noncomputable definition limit_seq (X : ℕ → M) [H : converges_seq X] : M := some H
|
|
|
|
|
|
|
|
|
|
proposition converges_to_limit_seq (X : ℕ → M) [H : converges_seq X] :
|
|
|
|
|
(X ⟶ limit_seq X in ℕ) :=
|
|
|
|
|
some_spec H
|
|
|
|
|
|
|
|
|
|
proposition converges_to_seq_unique {X : ℕ → M} {y₁ y₂ : M}
|
|
|
|
|
(H₁ : X ⟶ y₁ in ℕ) (H₂ : X ⟶ y₂ in ℕ) : y₁ = y₂ :=
|
|
|
|
|
eq_of_forall_dist_le
|
|
|
|
|
(take ε, suppose ε > 0,
|
|
|
|
|
have e2pos : ε / 2 > 0, from div_pos_of_pos_of_pos `ε > 0` two_pos,
|
|
|
|
|
obtain N₁ (HN₁ : ∀ {n}, n ≥ N₁ → dist (X n) y₁ < ε / 2), from H₁ e2pos,
|
|
|
|
|
obtain N₂ (HN₂ : ∀ {n}, n ≥ N₂ → dist (X n) y₂ < ε / 2), from H₂ e2pos,
|
|
|
|
|
let N := max N₁ N₂ in
|
|
|
|
|
have dN₁ : dist (X N) y₁ < ε / 2, from HN₁ !le_max_left,
|
|
|
|
|
have dN₂ : dist (X N) y₂ < ε / 2, from HN₂ !le_max_right,
|
|
|
|
|
have dist y₁ y₂ < ε, from calc
|
|
|
|
|
dist y₁ y₂ ≤ dist y₁ (X N) + dist (X N) y₂ : dist_triangle
|
|
|
|
|
... = dist (X N) y₁ + dist (X N) y₂ : dist_comm
|
|
|
|
|
... < ε / 2 + ε / 2 : add_lt_add dN₁ dN₂
|
|
|
|
|
... = ε : add_halves,
|
|
|
|
|
show dist y₁ y₂ ≤ ε, from le_of_lt this)
|
|
|
|
|
|
|
|
|
|
proposition eq_limit_of_converges_to_seq {X : ℕ → M} (y : M) (H : X ⟶ y in ℕ) :
|
|
|
|
|
y = @limit_seq M _ X (exists.intro y H) :=
|
|
|
|
|
converges_to_seq_unique H (@converges_to_limit_seq M _ X (exists.intro y H))
|
|
|
|
|
|
|
|
|
|
proposition converges_to_seq_constant (y : M) : (λn, y) ⟶ y in ℕ :=
|
|
|
|
|
take ε, assume egt0 : ε > 0,
|
|
|
|
|
exists.intro 0
|
|
|
|
|
(take n, suppose n ≥ 0,
|
|
|
|
|
calc
|
|
|
|
|
dist y y = 0 : !dist_self
|
|
|
|
|
... < ε : egt0)
|
|
|
|
|
|
|
|
|
|
definition cauchy (X : ℕ → M) : Prop :=
|
|
|
|
|
∀ ε : ℝ, ε > 0 → ∃ N, ∀ m n, m ≥ N → n ≥ N → dist (X m) (X n) < ε
|
|
|
|
|
|
|
|
|
|
proposition cauchy_of_converges_seq (X : ℕ → M) [H : converges_seq X] : cauchy X :=
|
|
|
|
|
take ε, suppose ε > 0,
|
|
|
|
|
obtain y (Hy : converges_to_seq X y), from H,
|
|
|
|
|
have e2pos : ε / 2 > 0, from div_pos_of_pos_of_pos `ε > 0` two_pos,
|
|
|
|
|
obtain N₁ (HN₁ : ∀ {n}, n ≥ N₁ → dist (X n) y < ε / 2), from Hy e2pos,
|
|
|
|
|
obtain N₂ (HN₂ : ∀ {n}, n ≥ N₂ → dist (X n) y < ε / 2), from Hy e2pos,
|
|
|
|
|
let N := max N₁ N₂ in
|
|
|
|
|
exists.intro N
|
|
|
|
|
(take m n, suppose m ≥ N, suppose n ≥ N,
|
|
|
|
|
have m ≥ N₁, from le.trans !le_max_left `m ≥ N`,
|
|
|
|
|
have n ≥ N₂, from le.trans !le_max_right `n ≥ N`,
|
|
|
|
|
have dN₁ : dist (X m) y < ε / 2, from HN₁ `m ≥ N₁`,
|
|
|
|
|
have dN₂ : dist (X n) y < ε / 2, from HN₂ `n ≥ N₂`,
|
|
|
|
|
show dist (X m) (X n) < ε, from calc
|
|
|
|
|
dist (X m) (X n) ≤ dist (X m) y + dist y (X n) : dist_triangle
|
|
|
|
|
... = dist (X m) y + dist (X n) y : dist_comm
|
|
|
|
|
... < ε / 2 + ε / 2 : add_lt_add dN₁ dN₂
|
|
|
|
|
... = ε : add_halves)
|
|
|
|
|
|
|
|
|
|
end metric_space_M
|
|
|
|
|
|
|
|
|
|
section metric_space_M_N
|
|
|
|
|
variables {M N : Type} [strucM : metric_space M] [strucN : metric_space N]
|
|
|
|
|
include strucM strucN
|
|
|
|
|
|
|
|
|
|
definition converges_to_at (f : M → N) (y : N) (x : M) :=
|
|
|
|
|
∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ x', x ≠ x' ∧ dist x x' < δ → dist (f x') y < ε
|
|
|
|
|
|
|
|
|
|
notation f `⟶` y `at` x := converges_to_at f y x
|
|
|
|
|
|
|
|
|
|
definition converges_at [class] (f : M → N) (x : M) :=
|
|
|
|
|
∃ y, converges_to_at f y x
|
|
|
|
|
|
|
|
|
|
noncomputable definition limit_at (f : M → N) (x : M) [H : converges_at f x] : N :=
|
|
|
|
|
some H
|
|
|
|
|
|
|
|
|
|
proposition converges_to_limit_at (f : M → N) (x : M) [H : converges_at f x] :
|
|
|
|
|
(f ⟶ limit_at f x at x) :=
|
|
|
|
|
some_spec H
|
|
|
|
|
|
2015-09-15 22:57:08 +00:00
|
|
|
|
definition continuous_at (f : M → N) (x : M) := converges_to_at f (f x) x
|
|
|
|
|
|
|
|
|
|
definition continuous (f : M → N) := ∀ x, continuous_at f x
|
|
|
|
|
|
|
|
|
|
theorem continuous_at_spec {f : M → N} {x : M} (Hf : continuous_at f x) :
|
|
|
|
|
∀ ⦃ε⦄, ε > 0 → ∃ δ, δ > 0 ∧ ∀ x', dist x x' < δ → dist (f x') (f x) < ε :=
|
|
|
|
|
take ε, suppose ε > 0,
|
|
|
|
|
obtain δ Hδ, from Hf this,
|
|
|
|
|
exists.intro δ (and.intro
|
|
|
|
|
(and.left Hδ)
|
|
|
|
|
(take x', suppose dist x x' < δ,
|
|
|
|
|
if Heq : x = x' then
|
|
|
|
|
by rewrite [Heq, dist_self]; assumption
|
|
|
|
|
else
|
2015-09-17 20:22:46 +00:00
|
|
|
|
(suffices dist x x' < δ, from and.right Hδ x' (and.intro Heq this),
|
2015-09-15 22:57:08 +00:00
|
|
|
|
this)))
|
|
|
|
|
|
|
|
|
|
theorem image_seq_converges_of_converges [instance] (X : ℕ → M) [HX : converges_seq X] {f : M → N} (Hf : continuous f) :
|
2015-09-17 20:22:46 +00:00
|
|
|
|
converges_seq (λ n, f (X n)) :=
|
2015-09-15 22:57:08 +00:00
|
|
|
|
begin
|
|
|
|
|
cases HX with xlim Hxlim,
|
|
|
|
|
existsi f xlim,
|
|
|
|
|
rewrite ↑converges_to_seq at *,
|
|
|
|
|
intros ε Hε,
|
|
|
|
|
let Hcont := Hf xlim Hε,
|
|
|
|
|
cases Hcont with δ Hδ,
|
|
|
|
|
cases Hxlim (and.left Hδ) with B HB,
|
|
|
|
|
existsi B,
|
|
|
|
|
intro n Hn,
|
|
|
|
|
cases em (xlim = X n),
|
2015-09-17 20:22:46 +00:00
|
|
|
|
rewrite [a, dist_self],
|
2015-09-15 22:57:08 +00:00
|
|
|
|
assumption,
|
|
|
|
|
apply and.right Hδ,
|
|
|
|
|
split,
|
|
|
|
|
exact a,
|
|
|
|
|
rewrite dist_comm,
|
|
|
|
|
apply HB Hn
|
|
|
|
|
end
|
|
|
|
|
|
2015-09-13 01:45:47 +00:00
|
|
|
|
end metric_space_M_N
|
|
|
|
|
|
|
|
|
|
end metric_space
|