lean2/library/data/list/basic.lean

260 lines
8.4 KiB
Text
Raw Normal View History

----------------------------------------------------------------------------------------------------
--- Copyright (c) 2014 Parikshit Khanna. All rights reserved.
--- Released under Apache 2.0 license as described in the file LICENSE.
--- Authors: Parikshit Khanna, Jeremy Avigad, Leonardo de Moura
----------------------------------------------------------------------------------------------------
import logic tools.helper_tactics tools.tactic data.nat.basic
-- Theory list
-- ===========
--
-- Basic properties of lists.
open eq.ops helper_tactics nat
inductive list (T : Type) : Type :=
nil {} : list T,
cons : T → list T → list T
namespace list
infixr `::` := cons
notation `[` l:(foldr `,` (h t, cons h t) nil) `]` := l
variable {T : Type}
protected theorem induction_on {P : list T → Prop} (l : list T) (Hnil : P nil)
(Hind : ∀ (x : T) (l : list T), P l → P (x::l)) : P l :=
rec Hnil Hind l
protected theorem cases_on {P : list T → Prop} (l : list T) (Hnil : P nil)
(Hcons : ∀ (x : T) (l : list T), P (x::l)) : P l :=
induction_on l Hnil (take x l IH, Hcons x l)
protected definition rec_on {A : Type} {C : list A → Type} (l : list A)
(H1 : C nil) (H2 : Π (h : A) (t : list A), C t → C (h::t)) : C l :=
rec H1 H2 l
-- Concat
-- ------
definition append (s t : list T) : list T :=
rec t (λx l u, x::u) s
infixl `++` : 65 := append
theorem append.nil_left (t : list T) : nil ++ t = t
theorem append.cons (x : T) (s t : list T) : x::s ++ t = x::(s ++ t)
theorem append.nil_right (t : list T) : t ++ nil = t :=
induction_on t rfl (λx l H, H ▸ rfl)
theorem append.assoc (s t u : list T) : s ++ t ++ u = s ++ (t ++ u) :=
induction_on s rfl (λx l H, H ▸ rfl)
-- Length
-- ------
definition length : list T → nat :=
rec 0 (λx l m, succ m)
theorem length.nil : length (@nil T) = 0
theorem length.cons (x : T) (t : list T) : length (x::t) = succ (length t)
theorem length.append (s t : list T) : length (s ++ t) = length s + length t :=
induction_on s (!add.zero_left⁻¹) (λx s H, !add.succ_left⁻¹ ▸ H ▸ rfl)
-- add_rewrite length_nil length_cons
-- Append
-- ------
definition concat (x : T) : list T → list T :=
rec [x] (λy l l', y::l')
theorem concat.nil (x : T) : concat x nil = [x]
theorem concat.cons (x y : T) (l : list T) : concat x (y::l) = y::(concat x l)
theorem concat.eq_append (x : T) (l : list T) : concat x l = l ++ [x]
-- add_rewrite append_nil append_cons
-- Reverse
-- -------
definition reverse : list T → list T :=
rec nil (λx l r, r ++ [x])
theorem reverse.nil : reverse (@nil T) = nil
theorem reverse.cons (x : T) (l : list T) : reverse (x::l) = concat x (reverse l)
theorem reverse.singleton (x : T) : reverse [x] = [x]
theorem reverse.append (s t : list T) : reverse (s ++ t) = (reverse t) ++ (reverse s) :=
induction_on s (!append.nil_right⁻¹)
(λx s H, calc
reverse (x::s ++ t) = reverse t ++ reverse s ++ [x] : {H}
... = reverse t ++ (reverse s ++ [x]) : !append.assoc)
theorem reverse.reverse (l : list T) : reverse (reverse l) = l :=
induction_on l rfl (λx l' H, H ▸ !reverse.append)
theorem concat.eq_reverse_cons (x : T) (l : list T) : concat x l = reverse (x :: reverse l) :=
induction_on l rfl
(λy l' H, calc
concat x (y::l') = (y::l') ++ [x] : !concat.eq_append
... = reverse (reverse (y::l')) ++ [x] : {!reverse.reverse⁻¹})
-- Head and tail
-- -------------
definition head (x : T) : list T → T :=
rec x (λx l h, x)
theorem head.nil (x : T) : head x nil = x
theorem head.cons (x x' : T) (t : list T) : head x' (x::t) = x
theorem head.concat {s : list T} (t : list T) (x : T) : s ≠ nil → (head x (s ++ t) = head x s) :=
cases_on s
(take H : nil ≠ nil, absurd rfl H)
(take x s, take H : x::s ≠ nil,
calc
head x (x::s ++ t) = head x (x::(s ++ t)) : {!append.cons}
... = x : !head.cons
... = head x (x::s) : !head.cons⁻¹)
definition tail : list T → list T :=
rec nil (λx l b, l)
theorem tail.nil : tail (@nil T) = nil
theorem tail.cons (x : T) (l : list T) : tail (x::l) = l
theorem cons_head_tail {l : list T} (x : T) : l ≠ nil → (head x l)::(tail l) = l :=
cases_on l
(assume H : nil ≠ nil, absurd rfl H)
(take x l, assume H : x::l ≠ nil, rfl)
-- List membership
-- ---------------
definition mem (x : T) : list T → Prop :=
rec false (λy l H, x = y H)
infix `∈` := mem
theorem mem.nil (x : T) : x ∈ nil ↔ false :=
iff.rfl
theorem mem.cons (x y : T) (l : list T) : x ∈ y::l ↔ (x = y x ∈ l) :=
iff.rfl
theorem mem.concat_imp_or {x : T} {s t : list T} : x ∈ s ++ t → x ∈ s x ∈ t :=
induction_on s or.inr
(take y s,
assume IH : x ∈ s ++ t → x ∈ s x ∈ t,
assume H1 : x ∈ y::s ++ t,
have H2 : x = y x ∈ s ++ t, from H1,
have H3 : x = y x ∈ s x ∈ t, from or.imp_or_right H2 IH,
iff.elim_right or.assoc H3)
theorem mem.or_imp_concat {x : T} {s t : list T} : x ∈ s x ∈ t → x ∈ s ++ t :=
induction_on s
(take H, or.elim H false_elim (assume H, H))
(take y s,
assume IH : x ∈ s x ∈ t → x ∈ s ++ t,
assume H : x ∈ y::s x ∈ t,
or.elim H
(assume H1,
or.elim H1
(take H2 : x = y, or.inl H2)
(take H2 : x ∈ s, or.inr (IH (or.inl H2))))
(assume H1 : x ∈ t, or.inr (IH (or.inr H1))))
theorem mem.concat (x : T) (s t : list T) : x ∈ s ++ t ↔ x ∈ s x ∈ t :=
iff.intro mem.concat_imp_or mem.or_imp_concat
theorem mem.split {x : T} {l : list T} : x ∈ l → ∃s t : list T, l = s ++ (x::t) :=
induction_on l
(take H : x ∈ nil, false_elim (iff.elim_left !mem.nil H))
(take y l,
assume IH : x ∈ l → ∃s t : list T, l = s ++ (x::t),
assume H : x ∈ y::l,
or.elim H
(assume H1 : x = y,
exists_intro nil (!exists_intro (H1 ▸ rfl)))
(assume H1 : x ∈ l,
obtain s (H2 : ∃t : list T, l = s ++ (x::t)), from IH H1,
obtain t (H3 : l = s ++ (x::t)), from H2,
have H4 : y :: l = (y::s) ++ (x::t),
from H3 ▸ rfl,
!exists_intro (!exists_intro H4)))
definition mem.is_decidable [instance] (H : decidable_eq T) (x : T) (l : list T) : decidable (x ∈ l) :=
rec_on l
(decidable.inr (iff.false_elim !mem.nil))
(take (h : T) (l : list T) (iH : decidable (x ∈ l)),
show decidable (x ∈ h::l), from
decidable.rec_on iH
(assume Hp : x ∈ l,
decidable.rec_on (H x h)
(assume Heq : x = h,
decidable.inl (or.inl Heq))
(assume Hne : x ≠ h,
decidable.inl (or.inr Hp)))
(assume Hn : ¬x ∈ l,
decidable.rec_on (H x h)
(assume Heq : x = h,
decidable.inl (or.inl Heq))
(assume Hne : x ≠ h,
have H1 : ¬(x = h x ∈ l), from
assume H2 : x = h x ∈ l, or.elim H2
(assume Heq, absurd Heq Hne)
(assume Hp, absurd Hp Hn),
have H2 : ¬x ∈ h::l, from
iff.elim_right (iff.flip_sign !mem.cons) H1,
decidable.inr H2)))
-- Find
-- ----
section
variable [H : decidable_eq T]
include H
definition find (x : T) : list T → nat :=
rec 0 (λy l b, if x = y then 0 else succ b)
theorem find.nil (x : T) : find x nil = 0
theorem find.cons (x y : T) (l : list T) : find x (y::l) = if x = y then 0 else succ (find x l)
theorem find.not_mem {l : list T} {x : T} : ¬x ∈ l → find x l = length l :=
rec_on l
(assume P₁ : ¬x ∈ nil, rfl)
(take y l,
assume iH : ¬x ∈ l → find x l = length l,
assume P₁ : ¬x ∈ y::l,
have P₂ : ¬(x = y x ∈ l), from iff.elim_right (iff.flip_sign !mem.cons) P₁,
have P₃ : ¬x = y ∧ ¬x ∈ l, from (iff.elim_left not_or P₂),
calc
find x (y::l) = if x = y then 0 else succ (find x l) : !find.cons
... = succ (find x l) : if_neg (and.elim_left P₃)
... = succ (length l) : {iH (and.elim_right P₃)}
... = length (y::l) : !length.cons⁻¹)
end
-- nth element
-- -----------
definition nth (x : T) (l : list T) (n : nat) : T :=
nat.rec (λl, head x l) (λm f l, f (tail l)) n l
theorem nth.zero (x : T) (l : list T) : nth x l 0 = head x l
theorem nth.succ (x : T) (l : list T) (n : nat) : nth x l (succ n) = nth x (tail l) n
end list