9 lines
234 B
Text
9 lines
234 B
Text
|
theorem symm_iff (p q : Bool) (H : p ↔ q) : (q ↔ p)
|
|||
|
:= symm H
|
|||
|
|
|||
|
theorem or_imp (p q : Bool) : (p ∨ q) ↔ (¬ p → q)
|
|||
|
:= let H1 := symm_iff _ _ (imp_or (¬ p) q) in
|
|||
|
let H2 := not_not_eq p in
|
|||
|
let H3 := subst H1 H2 in
|
|||
|
H3
|