36 lines
1.1 KiB
Text
36 lines
1.1 KiB
Text
|
Set: pp::colors
|
|||
|
Set: pp::unicode
|
|||
|
Defined: double
|
|||
|
⊤
|
|||
|
⊤
|
|||
|
9
|
|||
|
⊥
|
|||
|
2 + 2 + (2 + 2) + 1 ≥ 3
|
|||
|
3 ≤ 2 * 2 + 2 * 2 + 2 * 2 + 2 * 2 + 1
|
|||
|
Assumed: a
|
|||
|
Assumed: b
|
|||
|
Assumed: c
|
|||
|
Assumed: d
|
|||
|
Imported 'if_then_else'
|
|||
|
a * c + a * d + b * c + b * d
|
|||
|
trans (Nat::distributel a b (c + d))
|
|||
|
(trans (congr (congr2 Nat::add (Nat::distributer a c d)) (Nat::distributer b c d))
|
|||
|
(Nat::add_assoc (a * c + a * d) (b * c) (b * d)))
|
|||
|
Proved: congr2_congr1
|
|||
|
Proved: congr2_congr2
|
|||
|
Proved: congr1_congr2
|
|||
|
⊤
|
|||
|
trans (congr (congr2 eq
|
|||
|
(congr1 10
|
|||
|
(congr2 Nat::add (trans (congr2 (ite (a > 0) b) (Nat::add_zeror b)) (if_a_a (a > 0) b)))))
|
|||
|
(congr1 10 (congr2 Nat::add (if_a_a (a > 0) b))))
|
|||
|
(eq_id (b + 10))
|
|||
|
let κ::1 := congr2 (λ x : ℕ → ℕ, eq (x 10))
|
|||
|
(congr2 Nat::add (trans (congr2 (ite (a > 0) b) (Nat::add_zeror b)) (if_a_a (a > 0) b)))
|
|||
|
in trans (congr κ::1 (congr1 10 (congr2 Nat::add (if_a_a (a > 0) b)))) (eq_id (b + 10))
|
|||
|
a * a + a * b + b * a + b * b
|
|||
|
⊤ → ⊥ refl (⊤ → ⊥)
|
|||
|
⊤ → ⊤ refl (⊤ → ⊤)
|
|||
|
⊥ → ⊥ refl (⊥ → ⊥)
|
|||
|
⊥ refl ⊥
|